No Arabic abstract
We present a detailed timing study of the brightest persistent X-ray source Sco X-1 using the data collected by the Hard X-ray Modulation Telescope ($Insight$-HXMT) from July 2017 to August 2018. A complete $Z$-track hardness-intensity diagram (HID) is obtained. The normal branch oscillations (NBOs) at $sim$ 6 Hz in the lower part of the normal branch (NB) and the flare branch oscillations (FBOs) at $sim$ 16 Hz in the beginning part of the flaring branch (FB) are found in observations with the Low Energy X-ray Telescope (LE) and the Medium Energy X-ray Telescope (ME) of $Insight$-HXMT, while the horizontal branch oscillations (HBOs) at $sim$ 40 Hz and the kilohertz quasi-periodic oscillations (kHz QPOs) at $sim$ 800 Hz are found simultaneously up to 60 keV for the first time on the horizontal branch (HB) by the High Energy X-ray Telescope (HE) and ME. We find that for all types of the observed QPOs, the centroid frequencies are independent of energy, while the root mean square (rms) increases with energy; the centroid frequencies of both the HBOs and kHz QPOs increase along the $Z$-track from the top to the bottom of the HB; and the NBOs show soft phase lags increasing with energy. A continuous QPO transition from the FB to NB in $sim$ 200 s are also detected. Our results indicate that the non-thermal emission is the origin of all types of QPOs, the innermost region of the accretion disk is non-thermal in nature, and the corona is nonhomogeneous geometrically.
We present a detailed spectral-timing analysis of the Kilohertz quasi-periodic oscillations (kHz QPOs) in Sco X-1 using the data of Rossi X-ray Timing Explorer ($RXTE$) and the Hard X-ray Modulation Telescope ($Insight$-HXMT). The energy band with detectable kHz QPOs is studied for the first time: on the horizontal branch, it is $sim$ 6.89--24.01 keV and $sim$ 8.68--21.78 keV for the upper and lower kHz QPOs detected by $RXTE$, and $sim$ 9--27.5 keV for the upper kHz QPOs by $Insight$-HXMT; on the lower normal branch, the energy band is narrower. The fractional root mean square (rms) of the kHz QPOs increases with energy at lower energy, reaches a plateau at about 16 keV and 20 keV for the lower and upper peaks, and then levels off though with a large uncertainty. The simulation of the deadtime effect of $RXTE$/PCA shows that the deadtime does not affect much the search of the kHz QPOs but makes the rms amplitude underestimated. No significant QPO is detected below $sim$ 6 keV as shown by the $RXTE$ data, implying that the kHz QPOs do not originate from the black body emission of the accretion disk and neutron star surface. In addition, with the combined analysis of the energy spectra and the absolute rms spectra of kHz QPOs, we suggest that the kHz QPOs in Sco X-1 originate from the Comptonization of the inner part of the transition layer, where the rotation sets the frequency and the inward bulk motion makes the spectrum harder.
We study the 2018 outburst of Aql X-1 via the monitor of all sky X-ray image (MAXI) data. We show that the outburst starting in February 2018 is a member of short-low class in the frame of outburst duration and the peak count rate although the outburst morphology is slightly different from the other fast-rise-exponential-decay (FRED) type outbursts with a milder rising stage. We study the partial accretion in the weak propeller stage of Aql X-1 via the MAXI data of the 2018 outburst. We report on the spectral analysis of 3 observations of Aquila X-1 obtained by Insight - hard X-ray modulation telescope (Insight-HXMT) during the late decay stage of the 2018 outburst. We discuss that the data taken by Insight-HXMT is just after the transition to the weak propeller stage. Our analysis shows the necessity of a comptonization component to take into account the existence of an electron cloud resulting photons partly up-scattered.
We present a study of timing properties of the accreting pulsar 2S 1417-624 observed during its 2018 outburst, based on Swift/BAT, Fermi/GBM, Insight-HXMT and NICER observations. We report a dramatic change of the pulse profiles with luminosity. The morphology of the profile in the range 0.2-10.0keV switches from double to triple peaks at $sim2.5$ $rm times 10^{37}{it D}_{10}^2 erg s^{-1}$ and from triple to quadruple peaks at $sim7$ $rm times 10^{37}{it D}_{10}^2 erg s^{-1}$. The profile at high energies (25-100keV) shows significant evolutions as well. We explain this phenomenon according to existing theoretical models. We argue that the first change is related to the transition from the sub to the super-critical accretion regime, while the second to the transition of the accretion disc from the gas-dominated to the radiation pressure-dominated state. Considering the spin-up as well due to the accretion torque, this interpretation allows to estimate the magnetic field self-consistently at $sim7times 10^{12}$G.
The Hard X-ray Modulation Telescope ($Insight$-HXMT) was successfully launched on June 15th, 2017. It performs broad band X-ray scan survey of the Galactic Plane to detect new black holes and other objects in active states. It also observes X-ray binaries to study their X-ray variabilities. Here we will introduce the Science Operations of $Insight$-HXMT, which is responsible for collecting and evaluating observation proposals, scheduling observations, and monitoring the working status of the payloads.
We present the X-ray timing results of the new black hole candidate (BHC) MAXI J1535-571 during its 2017 outburst from Hard X-ray Modulation Telescope (emph{Insight}-HXMT) observations taken from 2017 September 6 to 23. Following the definitions given by citet{Belloni2010}, we find that the source exhibits state transitions from Low/Hard state (LHS) to Hard Intermediate state (HIMS) and eventually to Soft Intermediate state (SIMS). Quasi-periodic oscillations (QPOs) are found in the intermediate states, which suggest different types of QPOs. With the large effective area of emph{Insight}-HXMT at high energies, we are able to present the energy dependence of the QPO amplitude and centroid frequency up to 100 keV which is rarely explored by previous satellites. We also find that the phase lag at the type-C QPOs centroid frequency is negative (soft lags) and strongly correlated with the centroid frequency. By assuming a geometrical origin of type-C QPOs, the source is consistent with being a high inclination system.