Do you want to publish a course? Click here

Enhancing the Transformer with Explicit Relational Encoding for Math Problem Solving

233   0   0.0 ( 0 )
 Added by Imanol Schlag
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We incorporate Tensor-Product Representations within the Transformer in order to better support the explicit representation of relation structure. Our Tensor-Product Transformer (TP-Transformer) sets a new state of the art on the recently-introduced Mathematics Dataset containing 56 categories of free-form math word-problems. The essential component of the model is a novel attention mechanism, called TP-Attention, which explicitly encodes the relations between each Transformer cell and the other cells from which values have been retrieved by attention. TP-Attention goes beyond linear combination of retrieved values, strengthening representation-building and resolving ambiguities introduced by multiple layers of standard attention. The TP-Transformers attention maps give better insights into how it is capable of solving the Mathematics Datasets challenging problems. Pretrained models and code will be made available after publication.



rate research

Read More

Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
Time series forecasting is an important problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. In this paper, we propose to tackle such forecasting problem with Transformer [1]. Although impressed by its performance in our preliminary study, we found its two major weaknesses: (1) locality-agnostics: the point-wise dot-product self-attention in canonical Transformer architecture is insensitive to local context, which can make the model prone to anomalies in time series; (2) memory bottleneck: space complexity of canonical Transformer grows quadratically with sequence length $L$, making directly modeling long time series infeasible. In order to solve these two issues, we first propose convolutional self-attention by producing queries and keys with causal convolution so that local context can be better incorporated into attention mechanism. Then, we propose LogSparse Transformer with only $O(L(log L)^{2})$ memory cost, improving forecasting accuracy for time series with fine granularity and strong long-term dependencies under constrained memory budget. Our experiments on both synthetic data and real-world datasets show that it compares favorably to the state-of-the-art.
This paper proposes a new meta-learning method -- named HARMLESS (HAwkes Relational Meta LEarning method for Short Sequences) for learning heterogeneous point process models from short event sequence data along with a relational network. Specifically, we propose a hierarchical Bayesian mixture Hawkes process model, which naturally incorporates the relational information among sequences into point process modeling. Compared with existing methods, our model can capture the underlying mixed-community patterns of the relational network, which simultaneously encourages knowledge sharing among sequences and facilitates adaptive learning for each individual sequence. We further propose an efficient stochastic variational meta expectation maximization algorithm that can scale to large problems. Numerical experiments on both synthetic and real data show that HARMLESS outperforms existing methods in terms of predicting the future events.
Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verification by applying a CHC transformation, called predicate pairing, which allows the CHC solver to infer relations among arguments of different predicates. In this paper we study how the effects of the predicate pairing transformation can be enhanced by using various abstract domains based on linear arithmetic (i.e., the domain of convex polyhedra and some of its subdomains) during the transformation. After presenting an algorithm for predicate pairing with abstraction, we report on the experiments we have performed on over a hundred relational verification problems by using various abstract domains. The experiments have been performed by using the VeriMAP transformation and verification system, together with the Parma Polyhedra Library (PPL) and the Z3 solver for CHCs.
Inspired by the fruit-fly olfactory circuit, the Fly Bloom Filter [Dasgupta et al., 2018] is able to efficiently summarize the data with a single pass and has been used for novelty detection. We propose a new classifier (for binary and multi-class classification) that effectively encodes the different local neighborhoods for each class with a per-class Fly Bloom Filter. The inference on test data requires an efficient {tt FlyHash} [Dasgupta, et al., 2017] operation followed by a high-dimensional, but {em sparse}, dot product with the per-class Bloom Filters. The learning is trivially parallelizable. On the theoretical side, we establish conditions under which the prediction of our proposed classifier on any test example agrees with the prediction of the nearest neighbor classifier with high probability. We extensively evaluate our proposed scheme with over $50$ data sets of varied data dimensionality to demonstrate that the predictive performance of our proposed neuroscience inspired classifier is competitive the the nearest-neighbor classifiers and other single-pass classifiers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا