Do you want to publish a course? Click here

Quantumness of Relative Incompatibility

226   0   0.0 ( 0 )
 Added by Rounak Mundra
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a new measure of relative incompatibility for a quantum system with respect to two non-commuting observables, and call it quantumness of relative incompatibility. In case of a classical state, order of observation is inconsequential, hence probability distribution of outcomes of any observable remains undisturbed. We define relative entropy of the two marginal probability distributions as a measure of quantumness in the state, which is revealed only in presence of two non-commuting observables. Like all other measures, we show that the proposed measure satisfies some basic axioms. Also, we find that this measure depicts complementarity with quantum coherence. The relation is more vivid when we choose one of the observables in such a way that its eigen basis matches with the basis in which the coherence is measured. Our result indicates that the quantumness in a single system is still an interesting question to explore and there can be an inherent feature of the state which manifests beyond the idea of quantum coherence.



rate research

Read More

The reliability of quantum channels for transmitting information is of profound importance from the perspective of quantum information. This naturally leads to the question as how well a quantum state is preserved when subjected to a quantum channel. We propose a measure of quantumness of channels based on non-commutativity of quantum states that is intuitive and easy to compute. We apply the proposed measure to some well known noise channels, both Markovian as well as non-Markovian and find that the results are in good agreement with those from a recently introduced $l_1$-norm coherence based measure.
A proof of quantumness is a method for provably demonstrating (to a classical verifier) that a quantum device can perform computational tasks that a classical device with comparable resources cannot. Providing a proof of quantumness is the first step towards constructing a useful quantum computer. There are currently three approaches for exhibiting proofs of quantumness: (i) Inverting a classically-hard one-way function (e.g. using Shors algorithm). This seems technologically out of reach. (ii) Sampling from a classically-hard-to-sample distribution (e.g. BosonSampling). This may be within reach of near-term experiments, but for all such tasks known verification requires exponential time. (iii) Interactive protocols based on cryptographic assumptions. The use of a trapdoor scheme allows for efficient verification, and implementation seems to require much less resources than (i), yet still more than (ii). In this work we propose a significant simplification to approach (iii) by employing the random oracle heuristic. (We note that we do not apply the Fiat-Shamir paradigm.) We give a two-message (challenge-response) proof of quantumness based on any trapdoor claw-free function. In contrast to earlier proposals we do not need an adaptive hard-core bit property. This allows the use of smaller security parameters and more diverse computational assumptions (such as Ring Learning with Errors), significantly reducing the quantum computational effort required for a successful demonstration.
87 - Andrei Khrennikov 2020
Our aim is to compare the fundamental notions of quantum physics - contextuality vs. incompatibility. One has to distinguish two different notions of contextuality, {it Bohr-contextuality} and {it Bell-contextuality}. The latter is defined operationally via violation of noncontextuality (Bell type) inequalities. This sort of contextuality will be compared with incompatibility. It is easy to show that, for quantum observables, there is {it no contextuality without incompatibility.} The natural question arises: What is contextuality without incompatibility? (What is dry-residue?) Generally this is the very complex question. We concentrated on contextuality for four quantum observables. We shown that in the CHSH-scenarios (for natural quantum observables) {it contextuality is reduced to incompatibility.} However, generally contextuality without incompatibility may have some physical content. We found a mathematical constraint extracting the contextuality component from incompatibility. However, the physical meaning of this constraint is not clear. In appendix 1, we briefly discuss another sort of contextuality based on the Bohrs complementarity principle which is treated as the {it contextuality-incompatibility principle}. Bohr-contextuality plays the crucial role in quantum foundations. Incompatibility is, in fact, a consequence of Bohr-contextuality. Finally, we remark that outside of physics, e.g., in cognitive psychology and decision making Bell-contextuality cleaned of incompatibility can play the important role.
The existence of incompatible measurements is often believed to be a feature of quantum theory which signals its inconsistency with any classical worldview. To prove the failure of classicality in the sense of Kochen-Specker noncontextuality, one does indeed require sets of incompatible measurements. However, a more broadly applicable and more permissive notion of classicality is the existence of a generalized-noncontextual ontological model. In particular, this notion can imply constraints on the representation of outcomes even within a single nonprojective measurement. We leverage this fact to demonstrate that measurement incompatibility is neither necessary nor sufficient for proofs of the failure of generalized noncontextuality. Furthermore, we show that every proof of the failure of generalized noncontextuality in a prepare-measure scenario can be converted into a proof of the failure of generalized noncontextuality in a corresponding scenario with no incompatible measurements.
Quantum mechanics marks a radical departure from the classical understanding of Nature, fostering an inherent randomness which forbids a deterministic description; yet the most fundamental departure arises from something different. As shown by Bell [1] and Kochen-Specker [2], quantum mechanics portrays a picture of the world in which reality loses its objectivity and is in fact created by observation. Quantum mechanics predicts phenomena which cannot be explained by any theory with objective realism, although our everyday experience supports the hypothesis that macroscopic objects, despite being made of quantum particles, exist independently of the act of observation; in this paper we identify this behavior as classical. Here we show that this seemingly obvious classical behavior of the macroscopic world cannot be experimentally tested and belongs to the realm of ontology similar to the dispute on the interpretations of quantum mechanics [3,4]. For small systems such as a single photon [5] or a pair [6], it has been experimentally proven that a classical description cannot be sustained. Recently, there have also been experiments that claim to have demonstrated quantum behavior of relatively large objects such as interference of fullerenes [7], the violation of Leggett-Garg inequality in Josephson junction [8], and interference between two condensed clouds of atoms [9], which suggest that there is no limit to the size of the system on which the quantum-versus-classical question can be tested. These behaviors, however, are not sufficient to refute classical description in the sense of objective reality. Our findings show that once we reach the regime where an Avogadro number of particles is present, the quantum-versus-classical question cannot be answered experimentally.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا