Modified mass-conservative curved boundary scheme for lattice Boltzmann simulations


Abstract in English

The lattice Boltzmann (LB) method has gained much success in a variety of fields involving fluid flow and/or heat transfer. In this method, the bounce-back scheme is a popular boundary scheme for treating nonslip boundaries. However, this scheme leads to staircase-shaped boundaries for curved walls. Therefore many curved boundary schemes have been proposed, but mostly suffer from mass leakage at the curved boundaries. Several correction schemes have been suggested for simulating single-phase flows, but very few discussions or studies have been made for two-phase LB simulations with curved boundaries. In this paper, the performance of three well-known types of curved boundary schemes in two-phase LB simulations is investigated through modeling a droplet resting on a circular cylinder. For all of the investigated schemes, the results show that the simulated droplet rapidly evaporates under the nonslip and isothermal conditions, owing to the imbalance between the mass streamed out of the system by the outgoing distribution functions and the mass streamed into the system by the incoming distribution functions at each boundary node. Based on the numerical investigation, we formulate two modified mass-conservative curved boundary schemes for two-phase LB simulations. The accuracy of the modified curved boundary schemes and their capability of conserving mass in two-phase LB simulations are numerically demonstrated.

Download