Do you want to publish a course? Click here

Presaturation phase with no dipolar order in a quantum ferro-antiferromagnet

219   0   0.0 ( 0 )
 Added by Vivek Bhartiya
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetization, magnetocaloric, calorimetric, neutron and X-ray diffraction and inelastic neutron scattering measurements are performed on single crystals of BaCdVO(PO$_4$)$_2$. The low-temperature crystal structure is found to be of a lower symmetry than previously assumed. The result is a more complicated model spin Hamiltonian, which we infer from measurements of the spin wave dispersion spectrum. The main finding is a novel spin state which emerges in high magnetic fields after antiferromagnetic order is terminated at $H_{c1}simeq 4.0$ T. It is a distinct thermodynamic phase with a well-defined phase boundary at $H_{c2}simeq 6.5$ T and is clearly separate from the fully saturated phase. Yet, it shows no conventional (dipolar) magnetic long range order. We argue that it is fully consistent with the expectations for a quantum bond-nematic state.



rate research

Read More

One of the key questions concerning frustrated lattices that has lately emerged is the role of disorder in inducing spin-liquid-like properties. In this context, the quantum kagome antiferromagnets YCu$_3$(OH)$_6$Cl$_3$, which has been recently reported as the first geometrically perfect realization of the kagome lattice with negligible magnetic/non-magnetic intersite mixing and a possible quantum-spin-liquid ground state, is of particular interest. However, contrary to previous conjectures, here we show clear evidence of bulk magnetic ordering in this compound below $T_N=15$,K by combining bulk magnetization and heat capacity measurements, and local-probe muon spin relaxation measurements. The magnetic ordering in this material is rather unconventional in several respects. Firstly, a crossover regime where the ordered state coexists with the paramagnetic state extends down to $T_N/3$ and, secondly, the fluctuation crossover is shifted far below $T_N$. Moreover, a reduced magnetic-entropy release at $T_N$ and persistent spin dynamics that is observed at temperatures as low as $T/T_N=1/300$ could be a sign of emergent excitations of correlated spin-loops or, alternatively, a sign of fragmentation of each magnetic moment into an ordered and a fluctuating part.
Single crystals of the frustrated S=1/2 ferro-antiferromagnetic proximate square lattice material SrZnZnVO(PO$_4$)$_2$ are studied in magnetometric, calorimetric, neutron diffraction and inelastic neutron scattering experiments. The measured spin wave spectrum reveals a substantial degree of magnetic frustration and a large quantum renormalization of the exchange constants. The H-T magnetic phase diagram is established. It features a novel pre-saturation phase, which appears for only one particular field orientation. The results are discussed noting the similarities and differences with the previously studied and similarly structured Pb$_2$VO(PO$_4$)$_2$ compound.
74 - F. Landolt 2020
Magnetization, magnetic torque, neutron diffraction and NMR experiments are used to map out the $H$$-$$T$ phase diagram of the prototypical quasi-two-dimensional ferro-antiferromagnet Pb$_2$VO(PO$_4$)$_2$ in magnetic fields up to 27 T. When the field is applied perpendicular to the axis of magnetic anisotropy, a new magnetic state emerges through a discontinuous transition and persists in a narrow field range just below saturation. The measured NMR spectra suggest a complex and possibly incommensurate magnetic order in that regime.
A single-crystal sample of the frustrated quasi one-dimensional quantum magnet Cs$_{2}$Cu$_{2}$Mo$_{3}$O$_{12}$ is investigated by magnetic and thermodynamic measurements.A combination of specific heat and magnetic torque measurements maps out the entire $H$-$T$ phase diagram for three orientations.Remarkably, a new phase emerges below the saturation field, irrespective of the crystal orientation. It is suggested that the presaturation phase represents spin-nematic order or other multi-magnon condensate. The phase diagrams within the long-range ordered dome are qualitatively different for each geometry. In particular, multiple transitions are identified in the field along the chain direction.
212 - L. Jiao , H. Q. Yuan , Y. Kohama 2013
We report measurements of magnetic quantum oscillations and specific heat at low temperatures across a field-induced antiferromagnetic quantum critical point (QCP)(B_{c0}approx50T) of the heavy-fermion metal CeRhIn_5. A sharp magnetic-field induced Fermi surface reconstruction is observed inside the antiferromagnetic phase. Our results demonstrate multiple classes of QCPs in the field-pressure phase diagram of this heavy-fermion metal, pointing to a universal description of QCPs. They also suggest that robust superconductivity is promoted by unconventional quantum criticality of a fluctuating Fermi surface.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا