No Arabic abstract
In this paper we prove the following long-standing conjecture: stable solutions to semilinear elliptic equations are bounded (and thus smooth) in dimension $n leq 9$. This result, that was only known to be true for $nleq4$, is optimal: $log(1/|x|^2)$ is a $W^{1,2}$ singular stable solution for $ngeq10$. The proof of this conjecture is a consequence of a new universal estimate: we prove that, in dimension $n leq 9$, stable solutions are bounded in terms only of their $L^1$ norm, independently of the nonlinearity. In addition, in every dimension we establish a higher integrability result for the gradient and optimal integrability results for the solution in Morrey spaces. As one can see by a series of classical examples, all our results are sharp. Furthermore, as a corollary we obtain that extremal solutions of Gelfand problems are $W^{1,2}$ in every dimension and they are smooth in dimension $n leq 9$. This answers to two famous open problems posed by Brezis and Brezis-Vazquez.
We consider finite Morse index solutions to semilinear elliptic questions, and we investigate their smoothness. It is well-known that: - For $n=2$, there exist Morse index $1$ solutions whose $L^infty$ norm goes to infinity. - For $n geq 3$, uniform boundedness holds in the subcritical case for power-type nonlinearities, while for critical nonlinearities the boundedness of the Morse index does not prevent blow-up in $L^infty$. In this paper, we investigate the case of general supercritical nonlinearities inside convex domains, and we prove an interior a priori $L^infty$ bound for finite Morse index solution in the sharp dimensional range $3leq nleq 9$. As a corollary, we obtain uniform bounds for finite Morse index solutions to the Gelfand problem constructed via the continuity method.
A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in $mathbb{R}^n$ is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.
We prove nonexistence of nontrivial, possibly sign changing, stable solutions to a class of quasilinear elliptic equations with a potential on Riemannian manifolds, under suitable weighted volume growth conditions on geodesic balls.
In this paper, we investigate the problem of blow up and sharp upper bound estimates of the lifespan for the solutions to the semilinear wave equations, posed on asymptotically Euclidean manifolds. Here the metric is assumed to be exponential perturbation of the spherical symmetric, long range asymptotically Euclidean metric. One of the main ingredients in our proof is the construction of (unbounded) positive entire solutions for $Delta_{g}phi_lambda=lambda^{2}phi_lambda$, with certain estimates which are uniform for small parameter $lambdain (0,lambda_0)$. In addition, our argument works equally well for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
We consider positive singular solutions to semilinear elliptic problems with possibly singular nonlinearity. We deduce symmetry and monotonicity properties of the solutions via the moving plane procedure.