Do you want to publish a course? Click here

A paradigm for developing earthquake probability forecasts based on geoelectric data

267   0   0.0 ( 0 )
 Added by Hong-Jia Chen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the precursory behavior of geoelectric signals before large earthquakes by means of an algorithm including an alarm-based model and binary classification. This algorithm, introduced originally by Chen and Chen [Nat. Hazards., 84, 2016], is improved by removing a time parameter for coarse-graining of earthquake occurrences, as well as by extending the single station method into a joint stations method. We also determine the optimal frequency bands of earthquake-related geoelectric signals with the highest signal-to-noise ratio. Using significance tests, we also provide evidence of an underlying seismoelectric relationship. It is appropriate for machine learning to extract this underlying relationship, which could be used to quantify probabilistic forecasts of impending earthquakes, and to get closer to operational earthquake prediction.



rate research

Read More

We propose two new methods to calibrate the parameters of the Epidemic-Type Aftershock Sequence (ETAS) model based on expectation maximization (EM) while accounting for temporal variation of catalog completeness. The first method allows for model calibration on earthquake catalogs with long history, featuring temporal variation of the magnitude of completeness, $m_c$. This extended calibration technique is beneficial for long-term Probabilistic Seismic Hazard Assessment (PSHA), which is often based on a mixture of instrumental and historical catalogs. The second method jointly estimates ETAS parameters and high-frequency detection incompleteness to address the potential biases in parameter calibration due to short-term aftershock incompleteness. For this, we generalize the concept of completeness magnitude and consider a rate- and magnitude-dependent detection probability $-$ embracing incompleteness instead of avoiding it. Using synthetic tests, we show that both methods can accurately invert the parameters of simulated catalogs. We then use them to estimate ETAS parameters for California using the earthquake catalog since 1932. To explore how the newly gained information from the second method affects earthquakes predictability, we conduct pseudo-prospective forecasting experiments for California. Our proposed model significantly outperforms the base ETAS model, and we find that the ability to include small earthquakes for simulation of future scenarios is the main driver of the improvement. Our results point towards a preference of earthquakes to trigger similarly sized aftershocks, which has potentially major implications for our understanding of earthquake interaction mechanisms and for the future of seismicity forecasting.
Operational earthquake forecasting for risk management and communication during seismic sequences depends on our ability to select an optimal forecasting model. To do this, we need to compare the performance of competing models with each other in prospective forecasting mode, and to rank their performance using a fair, reproducible and reliable method. The Collaboratory for the Study of Earthquake Predictability (CSEP) conducts such prospective earthquake forecasting experiments around the globe. One metric that has been proposed to rank competing models is the Parimutuel Gambling score, which has the advantage of allowing alarm-based (categorical) forecasts to be compared with probabilistic ones. Here we examine the suitability of this score for ranking competing earthquake forecasts. First, we prove analytically that this score is in general improper, meaning that, on average, it does not prefer the model that generated the data. Even in the special case where it is proper, we show it can still be used in an improper way. Then, we compare its performance with two commonly-used proper scores (the Brier and logarithmic scores), taking into account the uncertainty around the observed average score. We estimate the confidence intervals for the expected score difference which allows us to define if and when a model can be preferred. Our findings suggest the Parimutuel Gambling score should not be used to distinguishing between multiple competing forecasts. They also enable a more rigorous approach to distinguish between the predictive skills of candidate forecasts in addition to their rankings.
140 - Sumiyoshi Abe 2010
Earthquake network is known to be of the small-world type. The values of the network characteristics, however, depend not only on the cell size (i.e., the scale of coarse graining needed for constructing the network) but also on the size of a seismic data set. Here, discovery of a scaling law for the clustering coefficient in terms of the data size, which is refereed to here as finite data-size scaling, is reported. Its universality is shown to be supported by the detailed analysis of the data taken from California, Japan and Iran. Effects of setting threshold of magnitude are also discussed.
In this paper we show that the simple analysis of the local geomagnetic field behaviour can serve as reliable imminent precursor for regional seismic activity increasing. As the first step the problem was investigated using one- component Dubna fluxgate magnetometer. The result of 2001-2004 Sofia monitoring confirmed many old papers for connection between Earth tide (Sun- Moon tides as earthquakes trigger) and jump (Geomagnetic quake) of daily averaged one minute standart deviation of the geomagnetic field. The second step (2004-present), which included analisys of three-component Danish fluxgate magnetometer data, worked in Skopje Seismological observatory, confirmed the first step result. The analysis of INTERMAGNET data stations around which was happened stronger earthquakes also confirmed our result. The distribution of time difference between the times of such earthquakes and local daily averaged tide vector movement for impending tide extreme confirms our estimate that the increasing seismicity is realized in time window about +/- 2.7 days. The Complex program for researching the possibility for when, where and how earthquakes prediction is proposed as well as the short description of FORTRAN codes for analysis of earthquakes, geomagnetic and tide data, their correlations and visualization.
An article for the Springer Encyclopedia of Complexity and System Science
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا