No Arabic abstract
We study the effective symmetry profiles of superconducting pair correlations and the flow of charge supercurrent in ballistic Weyl semimetal systems with a tilted dispersion relation. Utilizing a microscopic method in the ballistic regime and starting from both opposite-pseudospin and equal-pseudospin phonon-mediated opposite-spin electron-electron couplings, we calculate the anomalous Greens function to study various superconducting pair correlations that Weyl semimetal systems may develop. The momentum-space profile reveals that by properly manipulating the parameters of Weyl semimetal systems, including the tilting parameter, the effective symmetry class of even-parity s-wave (odd-parity p-wave) superconducting correlations can be converted into a d-wave (f-wave) symmetry class that consists of equal-pseudospin and opposite-pseudospin channels. We also find that the supercurrent in a ballistic Weyl Josephson junction can be made to vanish or switch directions, depending on the tilt of the Weyl cones, in addition to the relevant parameters characterizing the Weyl semimetal and junction. We show that inversion symmetry breaking terms introduce transitions that result in the appearance of self-biased current at zero difference between the macroscopic phases of the superconducting segments, creating a phi0 Josephson state. Weyl semimetal systems are shown to offer several experimentally tunable parameters to control the induction of higher harmonics into the current phase relations.
The Weyl semimetal is a new quantum state of topological semimetal, of which topological surface states -- the Fermi arcs exist. In this paper, the Fermi arcs in Weyl semimetals are classified into two classes -- class-1 and class-2. Based on a tight-binding model, the evolution and transport properties of class-1/2 Fermi arcs are studied via the tilting strength of the bulk Weyl cones. The (residual) anomalous Hall conductivity of topological surface states is a physical consequence of class-1 Fermi arc and thus class-1 Fermi arc becomes a nontrivial topological property for hybrid or type-II Weyl semimetal. Therefore, this work provides an intuitive method to learn topological properties of Weyl semimetal.
We perform a systematic study of the Zitterbewegung effect of fermions, which are described by a Gaussian wave with broken spatial-inversion symmetry in a three-dimensional low-energy Weyl semimetal. Our results show that the motion of fermions near the Weyl points is characterized by rectilinear motion and Zitterbewegung oscillation. The ZB oscillation is affected by the width of the Gaussian wave packet, the position of the Weyl node, and the chirality and anisotropy of the fermions. By introducing a one-dimensional cosine potential, the new generated massless fermions have lower Fermi Velocities, which results in a robust relativistic oscillation. Modulating the height and periodicity of periodic potential demonstrates that the ZB effect of fermions in the different Brillouin zones exhibits quasi-periodic behavior. These results may provide an appropriate system for probing the Zitterbewegung effect experimentally.
Topological crystalline superconductors have attracted rapidly rising attention due to the possibility of higher-order phases, which support Majorana modes on boundaries in $d-2$ or lower dimensions. However, although the classification and bulk topological invariants in such systems have been well studied, it is generally difficult to faithfully predict the boundary Majoranas from the band-structure information due to the lack of well-established bulk-boundary correspondence. Here we propose a protocol for deriving symmetry indicators that depend on a minimal set of necessary symmetry data of the bulk bands and can diagnose boundary features. Specifically, to obtain indicators manifesting clear bulk-boundary correspondence, we combine the topological crystal classification scheme in the real space and a twisted equivariant K group analysis in the momentum space. The key step is to disentangle the generally mixed strong and weak indicators through a systematic basis-matching procedure between our real-space and momentum-space approaches. We demonstrate our protocol using an example of two-dimensional time-reversal odd-parity superconductors, where the inversion symmetry is known to protect a higher-order phase with corner Majoranas. Symmetry indicators derived from our protocol can be readily applied to ab initio database and could fuel material predictions for strong and weak topological crystalline superconductors with various boundary features.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
Recent experimental breakthrough in magnetic Weyl semimetals have inspired exploration on the novel effects of various magnetic structures in these materials. Here we focus on a domain wall structure which connects two uniform domains with different magnetization directions. We study the topological superconducting state in presence of an s-wave superconducting pairing potential. By tuning the chemical potential, we can reach a topological state, where a chiral Majorana mode or zero-energy Majorana bound state is localized at the edges of the domain walls. This property allows a convenient braiding operation of Majorana modes by controlling the dynamics of domain walls.