Do you want to publish a course? Click here

Fully Integrated On-FPGA Molecular Dynamics Simulations

188   0   0.0 ( 0 )
 Added by Tong Geng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The implementation of Molecular Dynamics (MD) on FPGAs has received substantial attention. Previous work, however, has consisted of either proof-of-concept implementations of components, usually the range-limited force; full systems, but with much of the work shared by the host CPU; or prototype demonstrations, e.g., using OpenCL, that neither implement a whole system nor have competitive performance. In this paper, we present what we believe to be the first full-scale FPGA-based simulation engine, and show that its performance is competitive with a GPU (running Amber in an industrial production environment). The system features on-chip particle data storage and management, short- and long-range force evaluation, as well as bonded forces, motion update, and particle migration. Other contributions of this work include exploring numerous architectural trade-offs and analysis on various mappings schemes among particles/cells and the various on-chip compute units. The potential impact is that this system promises to be the basis for long timescale Molecular Dynamics with a commodity cluster.



rate research

Read More

FPGAs are increasingly common in modern applications, and cloud providers now support on-demand FPGA acceleration in data centers. Applications in data centers run on virtual infrastructure, where consolidation, multi-tenancy, and workload migration enable economies of scale that are fundamental to the providers business. However, a general strategy for virtualizing FPGAs has yet to emerge. While manufacturers struggle with hardware-based approaches, we propose a compiler/runtime-based solution called Synergy. We show a compiler transformation for Verilog programs that produces code able to yield control to software at sub-clock-tick granularity according to the semantics of the original program. Synergy uses this property to efficiently support core virtualization primitives: suspend and resume, program migration, and spatial/temporal multiplexing, on hardware which is available today. We use Synergy to virtualize FPGA workloads across a cluster of Altera SoCs and Xilinx FPGAs on Amazon F1. The workloads require no modification, run within 3-4x of unvirtualized performance, and incur a modest increase in FPGA fabric utilization.
111 - Yixing Li , Zichuan Liu , Kai Xu 2017
FPGA-based hardware accelerators for convolutional neural networks (CNNs) have obtained great attentions due to their higher energy efficiency than GPUs. However, it is challenging for FPGA-based solutions to achieve a higher throughput than GPU counterparts. In this paper, we demonstrate that FPGA acceleration can be a superior solution in terms of both throughput and energy efficiency when a CNN is trained with binary constraints on weights and activations. Specifically, we propose an optimized FPGA accelerator architecture tailored for bitwise convolution and normalization that features massive spatial parallelism with deep pipelines stages. A key advantage of the FPGA accelerator is that its performance is insensitive to data batch size, while the performance of GPU acceleration varies largely depending on the batch size of the data. Experiment results show that the proposed accelerator architecture for binary CNNs running on a Virtex-7 FPGA is 8.3x faster and 75x more energy-efficient than a Titan X GPU for processing online individual requests in small batch sizes. For processing static data in large batch sizes, the proposed solution is on a par with a Titan X GPU in terms of throughput while delivering 9.5x higher energy efficiency.
Replica Exchange (RE) simulations have emerged as an important algorithmic tool for the molecular sciences. RE simulations involve the concurrent execution of independent simulations which infrequently interact and exchange information. The next set of simulation parameters are based upon the outcome of the exchanges. Typically RE functionality is integrated into the molecular simulation software package. A primary motivation of the tight integration of RE functionality with simulation codes has been performance. This is limiting at multiple levels. First, advances in the RE methodology are tied to the molecular simulation code. Consequently these advances remain confined to the molecular simulation code for which they were developed. Second, it is difficult to extend or experiment with novel RE algorithms, since expertise in the molecular simulation code is typically required. In this paper, we propose the RepEx framework which address these aforementioned shortcomings of existing approaches, while striking the balance between flexibility (any RE scheme) and scalability (tens of thousands of replicas) over a diverse range of platforms. RepEx is designed to use a pilot-job based runtime system and support diverse RE Patterns and Execution Modes. RE Patterns are concerned with synchronization mechanisms in RE simulation, and Execution Modes with spatial and temporal mapping of workload to the CPU cores. We discuss how the design and implementation yield the following primary contributions of the RepEx framework: (i) its ability to support different RE schemes independent of molecular simulation codes, (ii) provide the ability to execute different exchange schemes and replica counts independent of the specific availability of resources, (iii) provide a runtime system that has first-class support for task-level parallelism, and (iv) required scalability along multiple dimensions.
146 - F. Belletti , M. Cotallo , A. Cruz 2007
We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.
In this paper we describe a single-node, double precision Field Programmable Gate Array (FPGA) implementation of the Conjugate Gradient algorithm in the context of Lattice Quantum Chromodynamics. As a benchmark of our proposal we invert numerically the Dirac-Wilson operator on a 4-dimensional grid on three Xilinx hardware solutions: Zynq Ultrascale+ evaluation board, the Alveo U250 accelerator and the largest device available on the market, the VU13P device. In our implementation we separate software/hardware parts in such a way that the entire multiplication by the Dirac operator is performed in hardware, and the rest of the algorithm runs on the host. We find out that the FPGA implementation can offer a performance comparable with that obtained using current CPU or Intels many core Xeon Phi accelerators. A possible multiple node FPGA-based system is discussed and we argue that power-efficient High Performance Computing (HPC) systems can be implemented using FPGA devices only.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا