Do you want to publish a course? Click here

Adaptive surrogate models for parametric studies

126   0   0.0 ( 0 )
 Added by Jan N. Fuhg
 Publication date 2019
and research's language is English
 Authors Jan N. Fuhg




Ask ChatGPT about the research

The computational effort for the evaluation of numerical simulations based on e.g. the finite-element method is high. Metamodels can be utilized to create a low-cost alternative. However the number of required samples for the creation of a sufficient metamodel should be kept low, which can be achieved by using adaptive sampling techniques. In this Master thesis adaptive sampling techniques are investigated for their use in creating metamodels with the Kriging technique, which interpolates values by a Gaussian process governed by prior covariances. The Kriging framework with extension to multifidelity problems is presented and utilized to compare adaptive sampling techniques found in the literature for benchmark problems as well as applications for contact mechanics. This thesis offers the first comprehensive comparison of a large spectrum of adaptive techniques for the Kriging framework. Furthermore a multitude of adaptive techniques is introduced to multifidelity Kriging as well as well as to a Kriging model with reduced hyperparameter dimension called partial least squares Kriging. In addition, an innovative adaptive scheme for binary classification is presented and tested for identifying chaotic motion of a Duffings type oscillator.



rate research

Read More

We introduce a unified probabilistic framework for solving sequential decision making problems ranging from Bayesian optimisation to contextual bandits and reinforcement learning. This is accomplished by a probabilistic model-based approach that explains observed data while capturing predictive uncertainty during the decision making process. Crucially, this probabilistic model is chosen to be a Meta-Learning system that allows learning from a distribution of related problems, allowing data efficient adaptation to a target task. As a suitable instantiation of this framework, we explore the use of Neural processes due to statistical and computational desiderata. We apply our framework to a broad range of problem domains, such as control problems, recommender systems and adversarial attacks on RL agents, demonstrating an efficient and general black-box learning approach.
Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document corpora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.
Estimators computed from adaptively collected data do not behave like their non-adaptive brethren. Rather, the sequential dependence of the collection policy can lead to severe distributional biases that persist even in the infinite data limit. We develop a general method -- $mathbf{W}$-decorrelation -- for transforming the bias of adaptive linear regression estimators into variance. The method uses only coarse-grained information about the data collection policy and does not need access to propensity scores or exact knowledge of the policy. We bound the finite-sample bias and variance of the $mathbf{W}$-estimator and develop asymptotically correct confidence intervals based on a novel martingale central limit theorem. We then demonstrate the empirical benefits of the generic $mathbf{W}$-decorrelation procedure in two different adaptive data settings: the multi-armed bandit and the autoregressive time series.
Many-query problems, arising from uncertainty quantification, Bayesian inversion, Bayesian optimal experimental design, and optimization under uncertainty-require numerous evaluations of a parameter-to-output map. These evaluations become prohibitive if this parametric map is high-dimensional and involves expensive solution of partial differential equations (PDEs). To tackle this challenge, we propose to construct surrogates for high-dimensional PDE-governed parametric maps in the form of projected neural networks that parsimoniously capture the geometry and intrinsic low-dimensionality of these maps. Specifically, we compute Jacobians of these PDE-based maps, and project the high-dimensional parameters onto a low-dimensional derivative-informed active subspace; we also project the possibly high-dimensional outputs onto their principal subspace. This exploits the fact that many high-dimensional PDE-governed parametric maps can be well-approximated in low-dimensional parameter and output subspace. We use the projection basis vectors in the active subspace as well as the principal output subspace to construct the weights for the first and last layers of the neural network, respectively. This frees us to train the weights in only the low-dimensional layers of the neural network. The architecture of the resulting neural network captures to first order, the low-dimensional structure and geometry of the parametric map. We demonstrate that the proposed projected neural network achieves greater generalization accuracy than a full neural network, especially in the limited training data regime afforded by expensive PDE-based parametric maps. Moreover, we show that the number of degrees of freedom of the inner layers of the projected network is independent of the parameter and output dimensions, and high accuracy can be achieved with weight dimension independent of the discretization dimension.
Neural networks are generally built by interleaving (adaptable) linear layers with (fixed) nonlinear activation functions. To increase their flexibility, several authors have proposed methods for adapting the activation functions themselves, endowing them with varying degrees of flexibility. None of these approaches, however, have gained wide acceptance in practice, and research in this topic remains open. In this paper, we introduce a novel family of flexible activation functions that are based on an inexpensive kernel expansion at every neuron. Leveraging over several properties of kernel-based models, we propose multiple variations for designing and initializing these kernel activation functions (KAFs), including a multidimensional scheme allowing to nonlinearly combine information from different paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the real line, either convex or nonconvex. Furthermore, they are smooth over their entire domain, linear in their parameters, and they can be regularized using any known scheme, including the use of $ell_1$ penalties to enforce sparseness. To the best of our knowledge, no other known model satisfies all these properties simultaneously. In addition, we provide a relatively complete overview on alternative techniques for adapting the activation functions, which is currently lacking in the literature. A large set of experiments validates our proposal.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا