Do you want to publish a course? Click here

Machine learning-guided synthesis of advanced inorganic materials

242   0   0.0 ( 0 )
 Added by Bijun Tang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to high uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development.

rate research

Read More

Magnetic refrigeration exploits the magnetocaloric effect which is the entropy change upon application and removal of magnetic fields in materials, providing an alternate path for refrigeration other than the conventional gas cycles. While intensive research has uncovered a vast number of magnetic materials which exhibits large magnetocaloric effect, these properties for a large number of compounds still remain unknown. To explore new functional materials in this unknown space, machine learning is used as a guide for selecting materials which could exhibit large magnetocaloric effect. By this approach, HoB$_{2}$ is singled out, synthesized and its magnetocaloric properties are evaluated, leading to the experimental discovery of gigantic magnetic entropy change 40.1 J kg$^{-1}$ K$^{-1}$ (0.35 J cm$^{-3}$ K$^{-1}$) for a field change of 5 T in the vicinity of a ferromagnetic second-order phase transition with a Curie temperature of 15 K. This is the highest value reported so far, to our knowledge, near the hydrogen liquefaction temperature thus it is a highly suitable material for hydrogen liquefaction and low temperature magnetic cooling applications.
Predictive materials synthesis is the primary bottleneck in realizing new functional and quantum materials. Strategies for synthesis of promising materials are currently identified by time-consuming trial and error approaches and there are no known predictive schemes to design synthesis parameters for new materials. We use reinforcement learning to predict optimal synthesis schedules, i.e. a time-sequence of reaction conditions like temperatures and reactant concentrations, for the synthesis of a prototypical quantum material, semiconducting monolayer MoS$_{2}$, using chemical vapor deposition. The predictive reinforcement leaning agent is coupled to a deep generative model to capture the crystallinity and phase-composition of synthesized MoS$_{2}$ during CVD synthesis as a function of time-dependent synthesis conditions. This model, trained on 10000 computational synthesis simulations, successfully learned threshold temperatures and chemical potentials for the onset of chemical reactions and predicted new synthesis schedules for producing well-sulfidized crystalline and phase-pure MoS$_{2}$, which were validated by computational synthesis simulations. The model can be extended to predict profiles for synthesis of complex structures including multi-phase heterostructures and can also predict long-time behavior of reacting systems, far beyond the domain of the MD simulations used to train the model, making these predictions directly relevant to experimental synthesis.
Leveraging new data sources is a key step in accelerating the pace of materials design and discovery. To complement the strides in synthesis planning driven by historical, experimental, and computed data, we present an automated method for connecting scientific literature to synthesis insights. Starting from natural language text, we apply word embeddings from language models, which are fed into a named entity recognition model, upon which a conditional variational autoencoder is trained to generate syntheses for arbitrary materials. We show the potential of this technique by predicting precursors for two perovskite materials, using only training data published over a decade prior to their first reported syntheses. We demonstrate that the model learns representations of materials corresponding to synthesis-related properties, and that the models behavior complements existing thermodynamic knowledge. Finally, we apply the model to perform synthesizability screening for proposed novel perovskite compounds.
Reducing the lateral scale of two-dimensional (2D) materials to one-dimensional (1D) has attracted substantial research interest not only to achieve competitive electronic device applications but also for the exploration of fundamental physical properties. Controllable synthesis of high-quality 1D nanoribbons (NRs) is thus highly desirable and essential for the further study. Traditional exploration of the optimal synthesis conditions of novel materials is based on the trial-and-error approach, which is time consuming, costly and laborious. Recently, machine learning (ML) has demonstrated promising capability in guiding material synthesis through effectively learning from the past data and then making recommendations. Here, we report the implementation of supervised ML for the chemical vapor deposition (CVD) synthesis of high-quality 1D few-layered WTe2 nanoribbons (NRs). The synthesis parameters of the WTe2 NRs are optimized by the trained ML model. On top of that, the growth mechanism of as-synthesized 1T few-layered WTe2 NRs is further proposed, which may inspire the growth strategies for other 1D nanostructures. Our findings suggest that ML is a powerful and efficient approach to aid the synthesis of 1D nanostructures, opening up new opportunities for intelligent material development.
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof. Currently, MLFFs often introduce tradeoffs that restrict their practical applicability to small subsets of chemical space or require exhaustive datasets for training. Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning (BIGDML) approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 geometries for materials including pristine and defect-containing 2D and 3D semiconductors and metals, as well as chemisorbed and physisorbed atomic and molecular adsorbates on surfaces. The BIGDML model employs the full relevant symmetry group for a given material, does not assume artificial atom types or localization of atomic interactions and exhibits high data efficiency and state-of-the-art energy accuracies (errors substantially below 1 meV per atom) for an extended set of materials. Extensive path-integral molecular dynamics carried out with BIGDML models demonstrate the counterintuitive localization of benzene--graphene dynamics induced by nuclear quantum effects and allow to rationalize the Arrhenius behavior of hydrogen diffusion coefficient in a Pd crystal for a wide range of temperatures.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا