The resonant state expansion, a rigorous perturbation theory, recently developed in electrodynamics, is applied to non-relativistic quantum mechanical systems in one dimension. The method is used here for finding the resonant states in various potentials approximated by combinations of Dirac delta functions. The resonant state expansion is first verified for a triple quantum well system, showing convergence to the available analytic solution as the number of resonant states in the basis increases. The method is then applied to multiple quantum well and barrier structures, including finite periodic systems. Results are compared with the eigenstates in triple quantum wells and infinite periodic potentials, revealing the nature of the resonant states in the studied systems.