No Arabic abstract
Developing a gate-tunable, scalable, and topologically-protectable supercurrent qubit and integrating it into a quantum circuit are crucial for applications in the fields of quantum information technology and topological phenomena. Here we propose that the nano-hybrid supercurrent transistors, a superconducting quantum analogue of a transistor, made of topological insulator nanowire would be a promising platform for unprecedented control of both the supercurrent magnitude and the current-phase relation by applying a voltage on a gate electrode. We believe that our experimental design will help probing Majorana state in topological insulator nanowire and establishing a solid-state platform for topological supercurrent qubit.
We study theoretically the electrical current and low-frequency noise for a linear Josephson junction structure on a topological insulator, in which the superconductor forms a closed ring and currents are injected from normal regions inside and outside the ring. We find that this geometry offers a signature for the presence of gapless 1D Majorana fermion modes that are predicted in the channel when the phase difference phi, controlled by the magnetic flux through the ring, is pi. We show that for low temperature the linear conductance jumps when phi passes through pi, accompanied by non-local correlations between the currents from the inside and outside of the ring. We compute the dependence of these features on temperature, voltage and linear dimensions, and discuss the implications for experiments.
Among the different platforms to engineer Majorana fermions in one-dimensional topological superconductors, topological insulator nanowires remain a promising option. Threading an odd number of flux quanta through these wires induces an odd number of surface channels, which can then be gapped with proximity induced pairing. Because of the flux and depending on energetics, the phase of this surface pairing may or may not wind around the wire in the form of a vortex. Here we show that for wires with discrete rotational symmetry, this vortex is necessary to produce a fully gapped topological superconductor with localized Majorana end states. Without a vortex the proximitized wire remains gapless, and it is only if the symmetry is broken by disorder that a gap develops, which is much smaller than the one obtained with a vortex. These results are explained with the help of a continuum model and validated numerically with a tight binding model, and highlight the benefit of a vortex for reliable use of Majorana fermions in this platform.
Finding a clear signature of topological superconductivity in transport experiments remains an outstanding challenge. In this work, we propose exploiting the unique properties of three-dimensional topological insulator nanowires to generate a normal-superconductor junction in the single-mode regime where an exactly quantized $2e^2/h$ zero-bias conductance can be observed over a wide range of realistic system parameters. This is achieved by inducing superconductivity in half of the wire, which can be tuned at will from trivial to topological with a parallel magnetic field, while a perpendicular field is used to gap out the normal part, except for two spatially separated chiral channels. The combination of chiral mode transport and perfect Andreev reflection makes the measurement robust to moderate disorder, and the quantization of conductance survives to much higher temperatures than in tunnel junction experiments. Our proposal may be understood as a variant of a Majorana interferometer which is easily realizable in experiments.
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries (Particle-hole symmetry, Majorana representation, Time-reversal and chiral symmetry) IV. Hamiltonian ensembles (The ten-fold way, Midgap spectral peak, Energy level repulsion) V. Scattering matrix ensembles (Fundamental symmetries, Chaotic scattering, Circular ensembles, Topological quantum numbers) VI. Electrical conduction (Majorana nanowire, Counting Majorana zero-modes, Conductance distribution, Weak antilocalization, Andreev resonances, Shot noise of Majorana edge modes) VII. Thermal conduction (Topological phase transitions, Super-universality, Heat transport by Majorana edge modes, Thermopower and time-delay matrix, Andreev billiard with chiral symmetry) VIII. Josephson junctions (Fermion parity switches, 4{pi}-periodic Josephson effect, Discrete vortices) IX. Conclusion
We show how a quantum dot with a ballistic single-channel point contact to a superconductor can be created by means of a gate electrode at the edge of a quantum spin Hall insulator (such as an InAs/GaSb quantum well). A weak perpendicular magnetic field traps a Majorana zero-mode, so that it can be observed in the gate-voltage-averaged differential conductance <dI/dV> as a 4e^2/h zero-bias peak above a (2/3{pi}^2 - 4)e^2/h background. The one-dimensional edge does not permit the braiding of pairs of Majorana fermions, but this obstacle can be overcome by coupling opposite edges at a constriction, allowing for a demonstration of non-Abelian statistics.