Many popular methods for building confidence intervals on causal effects under high-dimensional confounding require strong ultra-sparsity assumptions that may be difficult to validate in practice. To alleviate this difficulty, we here study a new method for average treatment effect estimation that yields asymptotically exact confidence intervals assuming that either the conditional response surface or the conditional probability of treatment allows for an ultra-sparse representation (but not necessarily both). This guarantee allows us to provide valid inference for average treatment effect in high dimensions under considerably more generality than available baselines. In addition, we showcase that our results are semi-parametrically efficient.