Do you want to publish a course? Click here

Single Image Reflection Removal Exploiting Misaligned Training Data and Network Enhancements

112   0   0.0 ( 0 )
 Added by Kaixuan Wei
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Removing undesirable reflections from a single image captured through a glass window is of practical importance to visual computing systems. Although state-of-the-art methods can obtain decent results in certain situations, performance declines significantly when tackling more general real-world cases. These failures stem from the intrinsic difficulty of single image reflection removal -- the fundamental ill-posedness of the problem, and the insufficiency of densely-labeled training data needed for resolving this ambiguity within learning-based neural network pipelines. In this paper, we address these issues by exploiting targeted network enhancements and the novel use of misaligned data. For the former, we augment a baseline network architecture by embedding context encoding modules that are capable of leveraging high-level contextual clues to reduce indeterminacy within areas containing strong reflections. For the latter, we introduce an alignment-invariant loss function that facilitates exploiting misaligned real-world training data that is much easier to collect. Experimental results collectively show that our method outperforms the state-of-the-art with aligned data, and that significant improvements are possible when using additional misaligned data.



rate research

Read More

106 - Yunfei Liu , Yu Li , Shaodi You 2019
Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because the color at each pixel needs to be separated into two values, i.e., the desired clear background and the reflection. To solve it, existing methods propose priors such as smoothness, color consistency. However, the low-level priors are not reliable in complex scenes, for instance, when capturing a real outdoor scene through a window, both the foreground and background contain both smooth and sharp area and a variety of color. In this paper, inspired by the fact that human can separate the two layers easily by recognizing the objects, we use the object semantic as guidance to force the same semantic object belong to the same layer. Extensive experiments on different datasets show that adding the semantic information offers a significant improvement to reflection separation. We also demonstrate the applications of the proposed method to other computer vision tasks.
78 - Zheng Dong , Ke Xu , Yin Yang 2020
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs. This probabilistic map tells if a region is reflection-dominated or transmission-dominated, and it is used as a cue for the network to control the feature flow when predicting the reflection and transmission layers. We design our network as a recurrent network to progressively refine reflection removal results at each iteration. The novelty is that we leverage Laplacian kernel parameters to emphasize the boundaries of strong reflections. It is beneficial to strong reflection detection and substantially improves the quality of reflection removal results. Extensive experiments verify the superior performance of the proposed method over state-of-the-art approaches. Our code and the pre-trained model can be found at https://github.com/zdlarr/Location-aware-SIRR.
Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
We introduce a deep network architecture called DerainNet for removing rain streaks from an image. Based on the deep convolutional neural network (CNN), we directly learn the mapping relationship between rainy and clean image detail layers from data. Because we do not possess the ground truth corresponding to real-world rainy images, we synthesize images with rain for training. In contrast to other common strategies that increase depth or breadth of the network, we use image processing domain knowledge to modify the objective function and improve deraining with a modestly-sized CNN. Specifically, we train our DerainNet on the detail (high-pass) layer rather than in the image domain. Though DerainNet is trained on synthetic data, we find that the learned network translates very effectively to real-world images for testing. Moreover, we augment the CNN framework with image enhancement to improve the visual results. Compared with state-of-the-art single image de-raining methods, our method has improved rain removal and much faster computation time after network training.
101 - Donghoon Lee , Ming-Hsuan Yang , 2018
Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes are known. It allows us to address the problem by generating both scenes that belong to the categories while their contents are constrained to match with the observed image. A novel network architecture is proposed to render realistic images of both scenes based on adversarial learning. The network can be trained in a weakly supervised manner, i.e., it learns to separate an observed image without corresponding ground truth images of transmission and reflection scenes which are difficult to collect in practice. Experimental results on real and synthetic datasets demonstrate that the proposed algorithm performs favorably against existing methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا