Do you want to publish a course? Click here

Electromagnetic Window into the Dawn of Black Holes

56   0   0.0 ( 0 )
 Added by Zoltan Haiman
 Publication date 2019
  fields Physics
and research's language is English
 Authors Zoltan Haiman




Ask ChatGPT about the research

Massive 10^6-10^10 Msun black holes (BHs) are ubiquitous in local galactic nuclei. They were common by the time the Universe is several Gyr old, and many of them were in place within the first 1~Gyr after the Big Bang. Their quick assembly has been attributed to mechanisms such as the rapid collapse of gas into the nuclei of early protogalaxies, accretion and mergers of stellar-mass BHs accompanying structure formation at early times, and the runaway collapse of early, ultra-dense stellar clusters. The origin of the early massive BHs remains an intriguing and long-standing unsolved puzzle in astrophysics. Here we discuss strategies for discerning between BH seeding models using electromagnetic observations. We argue that the most direct answers will be obtained through detection of BHs with masses M<10^5 Msun at redshifts z>10, where we expect them to first form. Reaching out to these redshifts and down to these masses is crucial, because BHs are expected to lose the memory of their initial assembly by the time they grow well above 10^5 Msun and are incorporated into higher-mass galaxies. The best way to detect 10^4-10^5 Msun BHs at high redshifts is by a sensitive X-ray survey. Critical constraining power is augmented by establishing the properties and the environments of their host galaxies in deep optical/IR imaging surveys. Required OIR data can be obtained with the JWST and WFIRST missions. The required X-ray flux limits (down to 10^{-19} erg/s/cm^2) are accessible only with a next-generation X-ray observatory which has both high (sub-1) angular resolution and high throughput. A combination of deep X-ray and OIR surveys will be capable of probing several generic markers of the BH seed scenarios, and resolving the long-stanging puzzle of their origin. These electromagnetic observations are also highly synergistic with the information from LISA on high-z BH mergers.



rate research

Read More

225 - Scott C. Noble 2012
As 2 black holes bound to each other in a close binary approach merger their inspiral time becomes shorter than the characteristic inflow time of surrounding orbiting matter. Using an innovative technique in which we represent the changing spacetime in the region occupied by the orbiting matter with a 2.5PN approximation and the binary orbital evolution with 3.5PN, we have simulated the MHD evolution of a circumbinary disk surrounding an equal-mass non-spinning binary. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results. The binary opens a low-density gap whose radius is roughly two binary separations, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; nonetheless, the accretion rate is diminished relative to its value at larger radius by only about a factor of 2. During inspiral, the inner edge of the disk at first moves inward in coordination with the shrinking binary, but as the orbital evolution accelerates, the rate at which the inner edge moves toward smaller radii falls behind the rate of binary compression. In this stage, the rate of angular momentum transfer from the binary to the disk slows substantially, but the net accretion rate decreases by only 10-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes in galactic nuclei could be very luminous at this stage of their evolution. If the luminosity were optically thin, it would be modulated at a frequency that is a beat between the orbital frequency of the disks surface density maximum and the binary orbital frequency. However, a disk with sufficient surface density to be luminous should also be optically thick; as a result, the periodic modulation may be suppressed.
We present the first fully relativistic prediction of the electromagnetic emission from the surrounding gas of a supermassive binary black hole system approaching merger. Using a ray-tracing code to post-process data from a general relativistic 3-d MHD simulation, we generate images and spectra, and analyze the viewing angle dependence of the light emitted. When the accretion rate is relatively high, the circumbinary disk, accretion streams, and mini-disks combine to emit light in the UV/EUV bands. We posit a thermal Compton hard X-ray spectrum for coronal emission; at high accretion rates, it is almost entirely produced in the mini-disks, but at lower accretion rates it is the primary radiation mechanism in the mini-disks and accretion streams as well. Due to relativistic beaming and gravitational lensing, the angular distribution of the power radiated is strongly anisotropic, especially near the equatorial plane.
It is now clear that a subset of supernovae display evidence for jets and are observed as gamma-ray bursts. The angular momentum distribution of massive stellar endpoints provides a rare means of constraining the nature of the central engine in core-collapse explosions. Unlike supermassive black holes, the spin of stellar-mass black holes in X-ray binary systems is little affected by accretion, and accurately reflects the spin set at birth. A modest number of stellar-mass black hole angular momenta have now been measured using two independent X-ray spectroscopic techniques. In contrast, rotation-powered pulsars spin-down over time, via magnetic braking, but a modest number of natal spin periods have now been estimated. For both canonical and extreme neutron star parameters, statistical tests strongly suggest that the angular momentum distributions of black holes and neutron stars are markedly different. Within the context of prevalent models for core-collapse supernovae, the angular momentum distributions are consistent with black holes typically being produced in GRB-like supernovae with jets, and with neutron stars typically being produced in supernovae with too little angular momentum to produce jets via magnetohydrodynamic processes. It is possible that neutron stars are imbued with high spin initially, and rapidly spun-down shortly after the supernova event, but the available mechanisms may be inconsistent with some observed pulsar properties.
Black holes are a common feature of the Universe. They are observed as stellar mass black holes spread throughout galaxies and as supermassive objects in their centres. Observations of stars orbiting close to the centre of our Galaxy provide detailed clear evidence for the presence of a 4 million Solar mass black hole. Gas accreting onto distant supermassive black holes produces the most luminous persistent sources of radiation observed, outshining galaxies as quasars. The energy generated by such displays may even profoundly affect the fate of a galaxy. We briefly review the history of black holes and relativistic astrophysics before exploring the observational evidence for black holes and reviewing current observations including black hole mass and spin. In parallel we outline the general relativistic derivation of the physical properties of black holes relevant to observation. Finally we speculate on future observations and touch on black hole thermodynamics and the extraction of energy from rotating black holes.
It is well established that between 380000 and 1 billion years after the Big Bang the Inter Galactic Medium (IGM) underwent a phase transformation from cold and fully neutral to warm (~10^4 K) and ionized. Whether this phase transformation was fully driven and completed by photoionization by young hot stars is a question of topical interest in cosmology. AIMS. We propose here that besides the ultraviolet radiation from massive stars, feedback from accreting black holes in high-mass X-ray binaries (BH-HMXBs) was an additional, important source of heating and reionization of the IGM in regions of low gas density at large distances from star-forming galaxies. METHODS. We use current theoretical models on the formation and evolution of primitive massive stars of low metallicity, and the observations of compact stellar remnants in the near and distant universe, to infer that a significant fraction of the first generations of massive stars end up as BH-HMXBs. The total number of energetic ionizing photons from an accreting stellar black hole in an HMXB is comparable to the total number of ionizing photons of its progenitor star. However, the X-ray photons emitted by the accreting black hole are capable of producing several secondary ionizations and the ionizing power of the resulting black hole could be greater than that of its progenitor. Feedback by the large populations of BH-HMXBs heats the IGM to temperatures of ~10^4 K and maintains it ionized on large distance scales. BH-HMXBs determine the early thermal history of the universe and mantain it as ionized over large volumes of space in regions of low density. This has a direct impact on the properties of the faintest galaxies at high redshifts, the smallest dwarf galaxies in the local universe, and on the existing and future surveys at radio wavelengths of atomic hydrogen in the early universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا