Do you want to publish a course? Click here

Label Embedded Dictionary Learning for Image Classification

397   0   0.0 ( 0 )
 Added by Shuai Shao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recently, label consistent k-svd (LC-KSVD) algorithm has been successfully applied in image classification. The objective function of LC-KSVD is consisted of reconstruction error, classification error and discriminative sparse codes error with L0-norm sparse regularization term. The L0-norm, however, leads to NP-hard problem. Despite some methods such as orthogonal matching pursuit can help solve this problem to some extent, it is quite difficult to find the optimum sparse solution. To overcome this limitation, we propose a label embedded dictionary learning (LEDL) method to utilise the L1-norm as the sparse regularization term so that we can avoid the hard-to-optimize problem by solving the convex optimization problem. Alternating direction method of multipliers and blockwise coordinate descent algorithm are then exploited to optimize the corresponding objective function. Extensive experimental results on six benchmark datasets illustrate that the proposed algorithm has achieved superior performance compared to some conventional classification algorithms.



rate research

Read More

Attributes act as intermediate representations that enable parameter sharing between classes, a must when training data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in the space of attribute vectors. We introduce a function that measures the compatibility between an image and a label embedding. The parameters of this function are learned on a training set of labeled samples to ensure that, given an image, the correct classes rank higher than the incorrect ones. Results on the Animals With Attributes and Caltech-UCSD-Birds datasets show that the proposed framework outperforms the standard Direct Attribute Prediction baseline in a zero-shot learning scenario. Label embedding enjoys a built-in ability to leverage alternative sources of information instead of or in addition to attributes, such as e.g. class hierarchies or textual descriptions. Moreover, label embedding encompasses the whole range of learning settings from zero-shot learning to regular learning with a large number of labeled examples.
Recently, as an effective way of learning latent representations, contrastive learning has been increasingly popular and successful in various domains. The success of constrastive learning in single-label classifications motivates us to leverage this learning framework to enhance distinctiveness for better performance in multi-label image classification. In this paper, we show that a direct application of contrastive learning can hardly improve in multi-label cases. Accordingly, we propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting, which learns multiple representations of an image under the context of different labels. This facilities a simple yet intuitive adaption of contrastive learning into our model to boost its performance in multi-label image classification. Extensive experiments on two benchmark datasets show that the proposed framework achieves state-of-the-art performance in the comparison with the advanced methods in multi-label classification.
The classification accuracy of deep learning models depends not only on the size of their training sets, but also on the quality of their labels. In medical image classification, large-scale datasets are becoming abundant, but their labels will be noisy when they are automatically extracted from radiology reports using natural language processing tools. Given that deep learning models can easily overfit these noisy-label samples, it is important to study training approaches that can handle label noise. In this paper, we adapt a state-of-the-art (SOTA) noisy-label multi-class training approach to learn a multi-label classifier for the dataset Chest X-ray14, which is a large scale dataset known to contain label noise in the training set. Given that this dataset also has label noise in the testing set, we propose a new theoretically sound method to estimate the performance of the model on a hidden clean testing data, given the result on the noisy testing data. Using our clean data performance estimation, we notice that the majority of label noise on Chest X-ray14 is present in the class No Finding, which is intuitively correct because this is the most likely class to contain one or more of the 14 diseases due to labelling mistakes.
In this paper, we present a novel deep metric learning method to tackle the multi-label image classification problem. In order to better learn the correlations among images features, as well as labels, we attempt to explore a latent space, where images and labels are embedded via two unique deep neural networks, respectively. To capture the relationships between image features and labels, we aim to learn a emph{two-way} deep distance metric over the embedding space from two different views, i.e., the distance between one image and its labels is not only smaller than those distances between the image and its labels nearest neighbors, but also smaller than the distances between the labels and other images corresponding to the labels nearest neighbors. Moreover, a reconstruction module for recovering correct labels is incorporated into the whole framework as a regularization term, such that the label embedding space is more representative. Our model can be trained in an end-to-end manner. Experimental results on publicly available image datasets corroborate the efficacy of our method compared with the state-of-the-arts.
232 - Shuai Shao , Mengke Wang , Rui Xu 2020
For classification tasks, dictionary learning based methods have attracted lots of attention in recent years. One popular way to achieve this purpose is to introduce label information to generate a discriminative dictionary to represent samples. However, compared with traditional dictionary learning, this category of methods only achieves significant improvements in supervised learning, and has little positive influence on semi-supervised or unsupervised learning. To tackle this issue, we propose a Dynamic Label Dictionary Learning (DLDL) algorithm to generate the soft label matrix for unlabeled data. Specifically, we employ hypergraph manifold regularization to keep the relations among original data, transformed data, and soft labels consistent. We demonstrate the efficiency of the proposed DLDL approach on two remote sensing datasets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا