Do you want to publish a course? Click here

Robust Video Background Identification by Dominant Rigid Motion Estimation

260   0   0.0 ( 0 )
 Added by Xun Xu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The ability to identify the static background in videos captured by a moving camera is an important pre-requisite for many video applications (e.g. video stabilization, stitching, and segmentation). Existing methods usually face difficulties when the foreground objects occupy a larger area than the background in the image. Many methods also cannot scale up to handle densely sampled feature trajectories. In this paper, we propose an efficient local-to-global method to identify background, based on the assumption that as long as there is sufficient camera motion, the cumulative background features will have the largest amount of trajectories. Our motion model at the two-frame level is based on the epipolar geometry so that there will be no over-segmentation problem, another issue that plagues the 2D motion segmentation approach. Foreground objects erroneously labelled due to intermittent motions are also taken care of by checking their global consistency with the final estimated background motion. Lastly, by virtue of its efficiency, our method can deal with densely sampled trajectories. It outperforms several state-of-the-art motion segmentation methods on public datasets, both quantitatively and qualitatively.

rate research

Read More

70 - Jinpeng Wang , Yuting Gao , Ke Li 2020
Self-supervised learning has shown great potentials in improving the video representation ability of deep neural networks by getting supervision from the data itself. However, some of the current methods tend to cheat from the background, i.e., the prediction is highly dependent on the video background instead of the motion, making the model vulnerable to background changes. To mitigate the model reliance towards the background, we propose to remove the background impact by adding the background. That is, given a video, we randomly select a static frame and add it to every other frames to construct a distracting video sample. Then we force the model to pull the feature of the distracting video and the feature of the original video closer, so that the model is explicitly restricted to resist the background influence, focusing more on the motion changes. We term our method as emph{Background Erasing} (BE). It is worth noting that the implementation of our method is so simple and neat and can be added to most of the SOTA methods without much efforts. Specifically, BE brings 16.4% and 19.1% improvements with MoCo on the severely biased datasets UCF101 and HMDB51, and 14.5% improvement on the less biased dataset Diving48.
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video. We integrate a learning-based depth prior, in the form of a convolutional neural network trained for single-image depth estimation, with geometric optimization, to estimate a smooth camera trajectory as well as detailed and stable depth reconstruction. Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details. In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations. Our method quantitatively outperforms state-of-the-arts on the Sintel benchmark for both depth and pose estimations and attains favorable qualitative results across diverse wild datasets.
Identifying underlying governing equations and physical relevant information from high-dimensional observable data has always been a challenge in physical sciences. With the recent advances in sensing technology and available datasets, various machine learning techniques have made it possible to distill underlying mathematical models from sufficiently clean and usable datasets. However, most of these techniques rely on prior knowledge of the system and noise-free data obtained by simulation of physical system or by direct measurements of the signals. Hence, the inference obtained by using these techniques is often unreliable to be used in the real world where observed data is noisy and requires feature engineering to extract relevant features. In this work, we provide a deep-learning framework that extracts relevant information from real-world videos of highly stochastic systems, with no prior knowledge and distills the underlying governing equation representing the system. We demonstrate this approach on videos of confined multi-agent/particle systems of ants, termites, fishes as well as a simulated confined multi-particle system with elastic collision interactions. Furthermore, we explore how these seemingly diverse systems have predictable underlying behavior. In this study, we have used computer vision and motion tracking to extract spatial trajectories of individual agents/particles in a system, and by using LSTM VAE we projected these features on a low-dimensional latent space from which the underlying differential equation representing the data was extracted using SINDy framework.
Various blur distortions in video will cause negative impact on both human viewing and video-based applications, which makes motion-robust deblurring methods urgently needed. Most existing works have strong dataset dependency and limited generalization ability in handling challenging scenarios, like blur in low contrast or severe motion areas, and non-uniform blur. Therefore, we propose a PRiOr-enlightened and MOTION-robust video deblurring model (PROMOTION) suitable for challenging blurs. On the one hand, we use 3D group convolution to efficiently encode heterogeneous prior information, explicitly enhancing the scenes perception while mitigating the outputs artifacts. On the other hand, we design the priors representing blur distribution, to better handle non-uniform blur in spatio-temporal domain. Besides the classical camera shake caused global blurry, we also prove the generalization for the downstream task suffering from local blur. Extensive experiments demonstrate we can achieve the state-of-the-art performance on well-known REDS and GoPro datasets, and bring machine task gain.
In this work, we address the problem of outlier detection for robust motion estimation by using modern sparse-low-rank decompositions, i.e., Robust PCA-like methods, to impose global rank constraints. Robust decompositions have shown to be good at splitting a corrupted matrix into an uncorrupted low-rank matrix and a sparse matrix, containing outliers. However, this process only works when matrices have relatively low rank with respect to their ambient space, a property not met in motion estimation problems. As a solution, we propose to exploit the partial information present in the decomposition to decide which matches are outliers. We provide evidences showing that even when it is not possible to recover an uncorrupted low-rank matrix, the resulting information can be exploited for outlier detection. To this end we propose the Robust Decomposition with Constrained Rank (RD-CR), a proximal gradient based method that enforces the rank constraints inherent to motion estimation. We also present a general framework to perform robust estimation for stereo Visual Odometry, based on our RD-CR and a simple but effective compressed optimization method that achieves high performance. Our evaluation on synthetic data and on the KITTI dataset demonstrates the applicability of our approach in complex scenarios and it yields state-of-the-art performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا