Do you want to publish a course? Click here

Hidden IR structures in NGC 40: signpost of an ancient born-again event

175   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the analysis of infrared (IR) observations of the planetary nebula NGC 40 together with spectral analysis of its [WC]-type central star HD 826. Spitzer IRS observations were used to produce spectral maps centred at polycyclic aromatic hydrocarbons (PAH) bands and ionic transitions to compare their spatial distribution. The ionic lines show a clumpy distribution of material around the main cavity of NGC 40, with the emission from [Ar II] being the most extended, whilst the PAHs show a rather smooth spatial distribution. Analysis of ratio maps shows the presence of a toroidal structure mainly seen in PAH emission, but also detected in a Herschel PACS 70 mic image. We argue that the toroidal structure absorbs the UV flux from HD 826, preventing the nebula to exhibit lines of high-excitation levels as suggested by previous authors. We discuss the origin of this structure and the results from the spectral analysis of HD 826 under the scenario of a late thermal pulse.



rate research

Read More

The detection and study of molecular gas in born-again stars would be of great importance to understand their composition and chemical evolution. In addition, the molecular emission would be an invaluable tool to explore the physical conditions, kinematics and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. We carried out observations using the APEX and IRAM 30m telescopes to search for molecular emission toward four well studied born-again stars, V4334 Sgr, V605 Aql, A30 and A78, that are thought to represent an evolutionary sequence. We detected for the first time emission from HCN and H$^{13}$CN molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. A first estimate of the H$^{12}$CN/H$^{13}$CN abundance ratio in the circumstellar environment of V4334 Sgr is $approx$3, which is similar to the value of the $^{12}$C/$^{13}$C ratio measured from other observations. We derived a rotational temperature of $T_{rm rot}$=13$pm1$ K, and a total column density of $N_{{rm HCN}}$=1.6$pm0.1times$10$^{16}$ cm$^{-2}$ for V4334 Sgr. This result sets a lower limit on the amount of hydrogen that was ejected into the wind during the born-again event of this source. For V605 Aql, we obtained a lower limit for the integrated line intensities $I_{^{12}rm C}$/$I_{^{13}rm C}$>4.
We present the first 3D radiation-hydrodynamic simulations on the formation and evolution of born-again planetary nebulae (PNe), with particular emphasis to the case of HuBi1, the inside-out PN. We use the extensively-tested GUACHO code to simulate the formation of HuBi1 adopting mass-loss and stellar wind terminal velocity estimates obtained from observations presented by our group. We found that, if the inner shell of HuBi1 was formed by an explosive very late thermal pulse (VLTP) ejecting material with velocities of $sim$300 km s$^{-1}$, the age of this structure is consistent with that of $simeq$200 yr derived from multi-epoch narrow-band imaging. Our simulations predict that, as a consequence of the dramatic reduction of the stellar wind velocity and photon ionizing flux during the VLTP, the velocity and pressure structure of the outer H-rich nebula are affected creating turbulent ionized structures surrounding the inner shell. These are indeed detected in Gran Telescopio Canarias MEGARA optical observations. Furthermore, we demonstrate that the current relatively low ionizing photon flux from the central star of HuBi1 is not able to completely ionize the inner shell, which favors previous suggestions that its excitation is dominated by shocks. Our simulations suggest that the kinetic energy of the H-poor ejecta of HuBi1 is at least 30 times that of the clumps and filaments in the evolved born-again PNe A30 and A78, making it a truly unique VLTP event.
We report the discovery of a handful of optical hydrogen-poor knots in the central part of an extended infrared nebula centred on the [WO1] star WR 72, obtained by spectroscopic and imaging observations with the Southern African Large Telescope (SALT). Wide-field Infrared Survey Explorer (WISE) images of the nebula show that it is composed of an extended almost circular halo (of $approx6$ arcmin or $approx2.4$ pc in diameter) and an elongated and apparently bipolar inner shell (of a factor of six smaller size), within which the knots are concentrated. Our findings indicate that WR 72 is a new member of the rare group of hydrogen-poor planetary nebulae, which may be explained through a very late thermal pulse of a post-AGB star, or by a merger of two white dwarfs.
HuBi 1 has been proposed to be member of the rare class of born-again planetary nebulae (PNe), i.e., its central star experienced a very late thermal pulse and ejected highly-processed material at high speeds inside the old hydrogen-rich PN. In this letter we present GTC MEGARA integral field spectroscopic observations of the innermost regions of HuBi 1 at high spectral resolution $simeq16$ km s$^{-1}$ and multi-epoch sub-arcsec images obtained $simeq 12$ yr apart. The analysis of these data indicates that the inner regions of HuBi 1 were ejected $simeq200$ yr ago and expand at velocities $simeq300$ km s$^{-1}$, in excellent agreement with the born-again scenario. The unprecedented tomographic capabilities of the GTC MEGARA high-dispersion observations used here reveal that the ejecta in HuBi 1 has a shell-like structure, in contrast to the disrupted disk and jet morphology of the ejecta in other born-again PNe.
The development of surveys which will be able to cover a large region of the sky several times per year will allow the massive detection of transient events taking place in timescales of years. In addition, the projected full digitalization of the Harvard plate collection will open a new window to identify slow transients taking place in timescales of centuries. In particular, these projects will allow the detection of stars undergoing slow eruptions as those expected during late helium flashes in the post-AGB evolution. In order to identify those transients which correspond with late helium flashes the development of synthetic light curves of those events is mandatory. In this connection we present preliminary results of a project aimed at computing grids of theoretical light curves of born again stars.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا