Algorithm and Hardness results on Liars Dominating Set and $k$-tuple Dominating Set


Abstract in English

Given a graph $G=(V,E)$, the dominating set problem asks for a minimum subset of vertices $Dsubseteq V$ such that every vertex $uin Vsetminus D$ is adjacent to at least one vertex $vin D$. That is, the set $D$ satisfies the condition that $|N[v]cap D|geq 1$ for each $vin V$, where $N[v]$ is the closed neighborhood of $v$. In this paper, we study two variants of the classical dominating set problem: $boldmath{k}$-tuple dominating set ($k$-DS) problem and Liars dominating set (LDS) problem, and obtain several algorithmic and hardness results. On the algorithmic side, we present a constant factor ($frac{11}{2}$)-approximation algorithm for the Liars dominating set problem on unit disk graphs. Then, we obtain a PTAS for the $boldmath{k}$-tuple dominating set problem on unit disk graphs. On the hardness side, we show a $Omega (n^2)$ bits lower bound for the space complexity of any (randomized) streaming algorithm for Liars dominating set problem as well as for the $boldmath{k}$-tuple dominating set problem. Furthermore, we prove that the Liars dominating set problem on bipartite graphs is W[2]-hard.

Download