Do you want to publish a course? Click here

On dimension of product of groups

77   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We prove that for geometrically finite groups cohomological dimension of the direct product of a group with itself equals 2 times the cohomological dimension dimension of the group.



rate research

Read More

140 - John M. Mackay 2014
We find new bounds on the conformal dimension of small cancellation groups. These are used to show that a random few relator group has conformal dimension 2+o(1) asymptotically almost surely (a.a.s.). In fact, if the number of relators grows like l^K in the length l of the relators, then a.a.s. such a random group has conformal dimension 2+K+o(1). In Gromovs density model, a random group at density d<1/8 a.a.s. has conformal dimension $asymp dl / |log d|$. The upper bound for C(1/8) groups has two main ingredients: $ell_p$-cohomology (following Bourdon-Kleiner), and walls in the Cayley complex (building on Wise and Ollivier-Wise). To find lower bounds we refine the methods of [Mackay, 2012] to create larger `round trees in the Cayley complex of such groups. As a corollary, in the density model at d<1/8, the density d is determined, up to a power, by the conformal dimension of the boundary and the Euler characteristic of the group.
Let $Gamma$ be the fundamental group of a surface of finite type and Comm$(Gamma)$ be its abstract commensurator. Then Comm$(Gamma)$ contains the solvable Baumslag--Solitar groups $langle a ,b : a b a^{-1} = b^n rangle$ for any $n > 1$. Moreover, the Baumslag--Solitar group $langle a ,b : a b^2 a^{-1} = b^3 rangle$ has an image in Comm$(Gamma)$ that is not residually finite. Our proofs are computer-assisted. Our results also illustrate that finitely-generated subgroups of Comm$(Gamma)$ are concrete objects amenable to computational methods. For example, we give a proof that $langle a ,b : a b^2 a^{-1} = b^3 rangle$ is not residually finite without the use of normal forms of HNN extensions.
193 - Ashot Minasyan , Denis Osin 2013
We provide new examples of acylindrically hyperbolic groups arising from actions on simplicial trees. In particular, we consider amalgamated products and HNN-extensions, 1-relator groups, automorphism groups of polynomial algebras, 3-manifold groups and graph products. Acylindrical hyperbolicity is then used to obtain some results about the algebraic structure, analytic properties and measure equivalence rigidity of groups from these classes.
We show that Out(G) is residually finite if G is a one-ended group that is hyperbolic relative to virtually polycyclic subgroups. More generally, if G is one-ended and hyperbolic relative to proper residually finite subgroups, the group of outer automorphisms preserving the peripheral structure is residually finite. We also show that Out(G) is virtually p-residually finite for every prime p if G is one-ended and toral relatively hyperbolic, or infinitely-ended and virtually p-residually finite.
We prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا