Neutron transfer reactions with fast secondary beams of $^{17}$Ne, $^{15}$O, and $^9$C have been studied with the HiRA and CAESAR arrays. Excited states of $^{18}$Ne, $^{16}$O, and $^{10}$C in the continuum have been identified using invariant-mass spectroscopy. The best experimental resolution of these states is achieved by selecting events where the decay fragments are emitted transverse to the beam direction. We have confirmed a number of spin assignments made in previous works for the negative-parity states of $^{18}$Ne. In addition we have found new higher-lying excited states in $^{16}$O and $^{18}$Ne, some of which fission into two ground-state $^8$Be fragments. Finally for $^{10}$C, a new excited state was observed. These transfer reactions were found to leave the remnant of the $^9$Be target nuclei at very high excitation energies and maybe associated with the pickup of a deeply-bound $^9$Be neutron.