Do you want to publish a course? Click here

Interplay of dynamical and explicit chiral symmetry breaking effects on a quark

73   0   0.0 ( 0 )
 Added by Fernando Serna A
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The relative contributions of explicit and dynamical chiral symmetry breaking in QCD models of the quark-gap equation are studied in dependence of frequently employed ansatze for the dressed interaction and quark-gluon vertex. The explicit symmetry breaking contributions are defined by a constituent-quark sigma term whereas the combined effects of explicit and dynamical symmetry breaking are described by a Euclidean constituent-mass solution. We extend this study of the gap equation to a quark-gluon vertex beyond the Abelian approximation complemented with numerical gluon- and ghost-dressing functions from lattice QCD. We find that the ratio of the sigma term over the Euclidean mass is largely independent of nonperturbative interaction and vertex models for current-quark masses, $m_{u,d}(mu) leq m(mu) leq m_b(mu)$, and equal contributions of explicit and dynamical chiral symmetry breaking occur at $m(mu) approx 400$~MeV. For massive solutions of the gap equation with lattice propagators this value decreases to about 200~MeV.



rate research

Read More

We investigate chiral symmetry breaking and strong CP violation effects in the phase diagram of strongly interacting matter. We demonstrate the effect of strong CP violating terms on the phase structure at finite temperature and densities in a 3-flavor Nambu-Jona-Lasinio (NJL) model including the Kobayashi-Maskawa-tHooft (KMT) determinant term. This is investigated using an explicit structure for the ground state in terms of quark-antiquark condensates for both in the scalar and the pseudoscalar channels. CP restoring transition with temperature at zero baryon density is found to be a second order transition at $theta = pi$ while the same at finite chemical potential and small temperature turns out to be a first order transition. Within the model, the tri-critical point turns out to be $(T_c,mu_c)simeq(273,94)$ MeV at $theta = pi$ for such a transition.
We study the phase diagram of QCD with the help of order parameters for chiral symmetry breaking and quark confinement. We also introduce a new order parameter for the confinement phase transition, which is related to the quark density. It is easily accessible by different theoretical approaches, such as functional approaches or lattice simulations. Its relation to the Polyakov loop expectation value is discussed and the QCD phase diagram is analysed. Our results suggest a close relation between the chiral and the confinement phase transition.
We investigate chiral symmetry breaking and strong CP violation effects on the phase diagram of strongly interacting matter in presence of a constant magnetic field. The effect of magnetic field and strong CP violating term on the phase structure at finite temperature and density is studied within a three flavor Nambu-Jona-Lasinio (NJL) model including the Kobayashi-Maskawa-tHooft (KMT) determinant term. This is investigated using an explicit variational ansatz for ground state with quark anti-quark pairs leading to condensates both in scalar and pseudoscalar channels. Magnetic field enhances the condensate in both the channels. Inverse magnetic catalysis for CP transition at finite chemical potential is seen for zero temperature and for small magnetic fields.
QCD monopoles are magnetically charged quasiparticles whose Bose-Einstein condensation (BEC) at $T<T_c$ creates electric confinement and flux tubes. The magnetic scenario of QCD proposes that scattering on the non-condensed component of the monopole ensemble at $T>T_c$ plays an important role in explaining the properties of strongly coupled quark-gluon plasma (sQGP) near the deconfinement temperature. In this paper, we study the phenomenon of chiral symmetry breaking and its relation to magnetic monopoles. Specifically, we study the eigenvalue spectrum of the Dirac operator in the basis of fermionic zero modes in an SU(2) monopole background. We find that as the temperature approaches the deconfinement temperature $T_c$ from above, the eigenvalue spectrum has a finite density at $omega = 0$, indicating the presence of a chiral condensate. In addition, we find the critical scaling of the eigenvalue gap to be consistent with that of the correlation length in the 3d Ising model and the BEC transition of monopoles on the lattice.
116 - Yang Li , James P. Vary 2021
We present an analytically solvable 3D light-front Hamiltonian model for hadrons that extends light-front holography by including finite mass quarks and a longitudinal confinement term. We propose that the model is suitable as an improved analytic approximation to QCD at a low resolution scale. We demonstrate that it preserves desired Lorentz symmetries and it produces improved agreement with the experimental mass spectroscopy and other properties of the light mesons. Importantly, the model also respects chiral symmetry and the Gell-Mann-Oakes-Renner relation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا