Do you want to publish a course? Click here

Interference between $E1$ and $M1$ transition amplitudes on the $H$ to $C$ transition in ThO

99   0   0.0 ( 0 )
 Added by Alexander Petrov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Calculations of Stark interference between $E1$ and $M1$ transition amplitudes on the $H^3Delta_1$ to $C^1Pi$ transition in ThO is performed. Calculations are required for estimations of systematic errors in the experiment for electron electric dipole (eEDM) moment search due to imperfections in laser beams used to prepare the molecule and read out the (eEDM) signal.



rate research

Read More

92 - A.N. Petrov 2017
Calculations of the correlations between the Rabi frequency on the $H^3Delta_1$ to $C^1Pi$ transition in ThO molecule and experimental setup parameters in the electron electric dipole moment (eEDM) search experiment is performed. Calculations are required for estimations of systematic errors in the experiment due to imperfections in laser beams used to prepare the molecule and read out the eEDM signal.
We present direct observation of the M1 transition between the fine structure splitting in the 4f13 5s2 5p6 2F ground state of W VIII. The spectroscopic data of few-times ionized tungsten ions are important for the future ITER diagnostics, but there is a serious lack of data. The present study is part of an ongoing effort to solve this lack. Emission from the tungsten ions produced and trapped in a compact electron beam ion trap is observed with a Czerny-Turner visible spectrometer. Spectra in the EUV range are also observed at the same time to help the identification of the previously-unreported visible lines. The observed wavelength 574.47 pm 0.03 nm (air), which corresponds to the fine structure splitting of 17402.5 pm 0.9 cm-1, shows reasonable agreement with the previously reported value 17410 pm 5 cm-1 obtained indirectly through the analysis of EUV spectra [Ryabtsev et al., Atoms 3 (2015) 273].
In this paper, we have calculated parity nonconserving electric dipole transition amplitudes of the hyperfine components for the transitions between the ground and first excited states of $^{137}$Ba$^{+}$ and $^{87}$Sr$^{+}$ using sum-over-states technique. The results are presented to extract the constants associated with the nuclear spin dependent amplitudes from experimental measurements. The wavefunctions to calculate the most dominant part of the sums are constructed using highly correlated coupled-cluster theory based on the Dirac-Coulomb-Gaunt Hamiltonian.
Level crossings in the ground state of ions occur when the nuclear charge Z and ion charge Z_ion are varied along an isoelectronic sequence until the two outermost shells are nearly degenerate. We examine all available level crossings in the periodic table for both near neutral ions and highly charged ions (HCIs). Normal E1 transitions in HCIs are in X-ray range, however level crossings allow for optical electromagnetic transitions that could form the reference transition for high accuracy atomic clocks. Optical E1 (due to configuration mixing), M1 and E2 transitions are available in HCIs near level crossings. We present scaling laws for energies and amplitudes that allow us to make simple estimates of systematic effects of relevance to atomic clocks. HCI clocks could have some advantages over existing optical clocks because certain systematic effects are reduced, for example they can have much smaller thermal shifts. Other effects such as fine-structure and hyperfine splitting are much larger in HCIs, which can allow for richer spectra. HCIs are excellent candidates for probing variations in the fine-structure constant, alpha, in atomic systems as there are transitions with the highest sensitivity to alpha-variation.
A method is proposed to determine the $M1$ nuclear transition amplitude and hence the lifetime of the nuclear clock transition between the low-lying ($sim 8$ eV) first isomeric state and the ground state of $^{229}$Th from a measurement of the ground-state $g$ factor of few-electron $^{229}$Th ions. As a tool, the effect of nuclear hyperfine mixing (NHM) in highly charged $^{229}$Th-ions such as $^{229}$Th$^{89+}$ or $^{229}$Th$^{87+}$ is utilized. The ground-state-only $g$-factor measurement would also provide first experimental evidence of NHM in atomic ions. Combining the measurements for H-, Li-, and B-like $^{229}$Th ions has a potential to improve the initial result for a single charge state and to determine the nuclear magnetic moment to a higher accuracy than that of the currently accepted value. The calculations include relativistic, interelectronic-interaction, QED, and nuclear effects.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا