Observing supermassive black holes in virtual reality


Abstract in English

We present a full 360 degree (i.e., 4$pi$ steradian) general-relativistic ray-tracing and radiative transfer calculations of accreting supermassive black holes. We perform state-of-the-art three-dimensional general relativistic magnetohydrodynamical simulations using the BHAC code, subsequently post-processing this data with the radiative transfer code RAPTOR. All relativistic and general-relativistic effects, such as Doppler boosting and gravitational redshift, as well as geometrical effects due to the local gravitational field and the observers changing position and state of motion, are therefore calculated self-consistently. Synthetic images at four astronomically-relevant observing frequencies are generated from the perspective of an observer with a full 360-degree view inside the accretion flow, who is advected with the flow as it evolves. As an example, we calculated images based on recent best-fit models of observations of Sagittarius A*. These images are combined to generate a complete 360-degree Virtual Reality movie of the surrounding environment of the black hole and its event horizon. Our approach also enables the calculation of the local luminosity received at a given fluid element in the accretion flow, providing important applications in, e.g., radiation feedback calculations onto black hole accretion flows. In addition to scientific applications, the 360-degree Virtual Reality movies we present also represent a new medium through which to communicate black hole physics to a wider audience, serving as a powerful educational tool.

Download