Correlators exceeding one in continuous measurements of superconducting qubits


Abstract in English

We consider the effect of phase backaction on the correlator $langle I(t), I(t+tau )rangle$ for the output signal $I(t)$ from continuous measurement of a qubit. We demonstrate that the interplay between informational and phase backactions in the presence of Rabi oscillations can lead to the correlator becoming larger than 1, even though $|langle Irangle|leq 1$. The correlators can be calculated using the generalized collapse recipe which we validate using the quantum Bayesian formalism. The recipe can be further generalized to the case of multi-time correlators and arbitrary number of detectors, measuring non-commuting qubit observables. The theory agrees well with experimental results for continuous measurement of a transmon qubit. The experimental correlator exceeds the bound of 1 for a sufficiently large angle between the amplified and informational quadratures, causing the phase backaction. The demonstrated effect can be used to calibrate the quadrature misalignment.

Download