Do you want to publish a course? Click here

Improving Hickson-like compact group finders in redshift surveys: an implementation in the SDSS

103   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work we present an algorithm to identify compact groups (CGs) that closely follows Hicksons original aim and that improves the completeness of the samples of compact groups obtained from redshift surveys. Instead of identifying CGs in projection first and then checking a velocity concordance criterion, we identify them directly in redshift space using Hickson-like criteria. The methodology was tested on a mock lightcone of galaxies built from the outputs of a recent semi-analytic model of galaxy formation run on top of the Millennium Simulation I after scaling to represent the first-year Planck cosmology. The new algorithm identifies nearly twice as many CGs, no longer missing CGs that failed the isolation criterion because of velocity outliers lying in the isolation annulus. The new CG sample picks up lower surface brightness groups, which are both looser and with fainter brightest galaxies, missed by the classic method. A new catalogue of compact groups from the Sloan Digital Sky Survey is the natural corollary of this study. The publicly available sample comprises $462$ observational groups with four or more galaxy members, of which $406$ clearly fulfil all the compact group requirements: compactness, isolation, and velocity concordance of all of their members. The remaining $56$ groups need further redshift information of potentially contaminating sources. This constitutes the largest sample of groups that strictly satisfy all the Hicksons criteria in a survey with available spectroscopic information.



rate research

Read More

101 - Noah Brosch 2015
I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertised to be non-interacting, or to be in a very early interaction stage, but this is not the case. The observations reported here were done using a luminance filter, essentially a very broad R filter, reaching a low surface brightness level of about 26 mag per square arcsec. Additional observations were obtained in a narrow spectral band approximately centered on the rest-frame H-alpha line from the group. Contrary to previous studies, my observations show that at least two of the major galaxies have had significant interactions in the past, although probably not between themselves. I report the discovery of a faint extended tail emerging from the brightest of the group galaxies, severe isophote twisting and possible outer shells around another galaxy, and map the HII regions in all the galaxies.
We report the discovery of a very diverse set of five low-surface brightness (LSB) dwarf galaxy candidates in Hickson Compact Group 90 (HCG 90) detected in deep U- and I-band images obtained with VLT/VIMOS. These are the first LSB dwarf galaxy candidates found in a compact group of galaxies. We measure spheroid half-light radii in the range $0.7!lesssim! r_{rm eff}/{rm kpc}! lesssim! 1.5$ with luminosities of $-11.65!lesssim! M_U! lesssim! -9.42$ and $-12.79!lesssim! M_I! lesssim! -10.58$ mag, corresponding to a color range of $(U!-!I)_0!simeq!1.1!-!2.2$ mag and surface brightness levels of $mu_U!simeq!28.1,{rm mag/arcsec^2}$ and $mu_I!simeq!27.4,{rm mag/arcsec^2}$. Their colours and luminosities are consistent with a diverse set of stellar population properties. Assuming solar and 0.02 Z$_odot$ metallicities we obtain stellar masses in the range $M_*|_{Z_odot} simeq 10^{5.7-6.3} M_{odot}$ and $M_*|_{0.02,Z_odot}!simeq!10^{6.3-8},M_{odot}$. Three dwarfs are older than 1 Gyr, while the other two significantly bluer dwarfs are younger than $sim 2$ Gyr at any mass/metallicity combination. Altogether, the new LSB dwarf galaxy candidates share properties with dwarf galaxies found throughout the Local Volume and in nearby galaxy clusters such as Fornax. We find a pair of candidates with $sim!2$ kpc projected separation, which may represent one of the closest dwarf galaxy pairs found. We also find a nucleated dwarf candidate, with a nucleus size of $r_{rm eff}!simeq!46!-!63$ pc and magnitude M$_{U,0}=-7.42$ mag and $(U!-!I)_0!=!1.51$ mag, which is consistent with a nuclear stellar disc with a stellar mass in the range $10^{4.9-6.5},M_odot$.
We have analyzed the intra-group light component of 3 Hickson Compact Groups (HCG 79, HCG 88 and HCG 95) with detections in two of them: HCG 79, with $46pm11%$ of the total $B$ band luminosity and HCG 95 with $11pm26%$. HCG 88 had no component detected. This component is presumably due to tidally stripped stellar material trapped in the group potential and represents an efficient tool to determine the stage of dynamical evolution and to map its gravitational potential. To detect this low surface brightness structure we have applied the wavelet technique OV_WAV, which separates the different components of the image according to their spatial characteristic sizes.
Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7mu PAH emission (Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as for field galaxies. (ii) Some galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 kms. The line shapes are irregular and show various components. (iii) The mapped objects show asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (= SFR/MH2) of galaxies in HCGs is similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-types and spirals has been found. (v) The molecular gas masses, MH2, and MH2/LK are lower in MOHEGs (predominantly early-types) than in non-MOHEGs (predominantly spirals). This trend remains when comparing MOHEGs and non-MOHEGs of the same morphological type. The differences in the molecular gas properties of MOHEGs support the view that they are suffering perturbations of the molecular gas, as well as a decrease in the molecular gas content and associated SFR.
This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson Compact Groups. We used rotation curves from high resolution 2D velocity fields of Fabry-Perot observations and J-band photometry from the 2MASS survey, in order to determine the dark halo and the visible matter distributions. The study compares two halo density profile, an isothermal core-like distribution and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al (2004) and 35 field galaxies of Spano et al. (2008). The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent to galaxy type and environment. We have found that core-like density profiles fit better the rotation curves than cuspy-like ones. No major differences have been found between field, cluster and compact group galaxies with respect to their dark halo density profiles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا