Do you want to publish a course? Click here

Submodular Maximization with Matroid and Packing Constraints in Parallel

83   0   0.0 ( 0 )
 Added by Alina Ene
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider the problem of maximizing the multilinear extension of a submodular function subject a single matroid constraint or multiple packing constraints with a small number of adaptive rounds of evaluation queries. We obtain the first algorithms with low adaptivity for submodular maximization with a matroid constraint. Our algorithms achieve a $1-1/e-epsilon$ approximation for monotone functions and a $1/e-epsilon$ approximation for non-monotone functions, which nearly matches the best guarantees known in the fully adaptive setting. The number of rounds of adaptivity is $O(log^2{n}/epsilon^3)$, which is an exponential speedup over the existing algorithms. We obtain the first parallel algorithm for non-monotone submodular maximization subject to packing constraints. Our algorithm achieves a $1/e-epsilon$ approximation using $O(log(n/epsilon) log(1/epsilon) log(n+m)/ epsilon^2)$ parallel rounds, which is again an exponential speedup in parallel time over the existing algorithms. For monotone functions, we obtain a $1-1/e-epsilon$ approximation in $O(log(n/epsilon)log(m)/epsilon^2)$ parallel rounds. The number of parallel rounds of our algorithm matches that of the state of the art algorithm for solving packing LPs with a linear objective. Our results apply more generally to the problem of maximizing a diminishing returns submodular (DR-submodular) function.



rate research

Read More

Motivated by applications in machine learning, such as subset selection and data summarization, we consider the problem of maximizing a monotone submodular function subject to mixed packing and covering constraints. We present a tight approximation algorithm that for any constant $epsilon >0$ achieves a guarantee of $1-frac{1}{mathrm{e}}-epsilon$ while violating only the covering constraints by a multiplicative factor of $1-epsilon$. Our algorithm is based on a novel enumeration method, which unlike previous known enumeration techniques, can handle both packing and covering constraints. We extend the above main result by additionally handling a matroid independence constraints as well as finding (approximate) pareto set optimal solutions when multiple submodular objectives are present. Finally, we propose a novel and purely combinatorial dynamic programming approach that can be applied to several special cases of the problem yielding not only {em deterministic} but also considerably faster algorithms. For example, for the well studied special case of only packing constraints (Kulik {em et. al.} [Math. Oper. Res. `13] and Chekuri {em et. al.} [FOCS `10]), we are able to present the first deterministic non-trivial approximation algorithm. We believe our new combinatorial approach might be of independent interest.
84 - Alina Ene , Huy L. Nguyen 2018
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We develop a new algorithm for a emph{general matroid constraint} with a $1 - 1/e - epsilon$ approximation that achieves a fast running time provided we have a fast data structure for maintaining a maximum weight base in the matroid through a sequence of decrease weight operations. We construct such data structures for graphic matroids and partition matroids, and we obtain the emph{first algorithms} for these classes of matroids that achieve a nearly-optimal, $1 - 1/e - epsilon$ approximation, using a nearly-linear number of function evaluations and arithmetic operations.
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contribution is a single-pass (semi-)streaming algorithm that uses roughly $O(k / varepsilon^2)$ memory, where $k$ is the size constraint. At the end of the stream, our algorithm post-processes its data structure using any offline algorithm for submodular maximization, and obtains a solution whose approximation guarantee is $frac{alpha}{1+alpha}-varepsilon$, where $alpha$ is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to $frac{1}{2}-varepsilon$ approximation (which is nearly optimal). If we post-process with the algorithm of Buchbinder and Feldman (Math of OR 2019), that achieves the state-of-the-art offline approximation guarantee of $alpha=0.385$, we obtain $0.2779$-approximation in polynomial time, improving over the previously best polynomial-time approximation of $0.1715$ due to Feldman et al. (NeurIPS 2018). It is also worth mentioning that our algorithm is combinatorial and deterministic, which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast update time of $O(frac{log k + log (1/alpha)}{varepsilon^2})$ per element.
94 - Alina Ene , Huy L. Nguyen 2019
In this work, we give a new parallel algorithm for the problem of maximizing a non-monotone diminishing returns submodular function subject to a cardinality constraint. For any desired accuracy $epsilon$, our algorithm achieves a $1/e - epsilon$ approximation using $O(log{n} log(1/epsilon) / epsilon^3)$ parallel rounds of function evaluations. The approximation guarantee nearly matches the best approximation guarantee known for the problem in the sequential setting and the number of parallel rounds is nearly-optimal for any constant $epsilon$. Previous algorithms achieve worse approximation guarantees using $Omega(log^2{n})$ parallel rounds. Our experimental evaluation suggests that our algorithm obtains solutions whose objective value nearly matches the value obtained by the state of the art sequential algorithms, and it outperforms previous parallel algorithms in number of parallel rounds, iterations, and solution quality.
As the scales of data sets expand rapidly in some application scenarios, increasing efforts have been made to develop fast submodular maximization algorithms. This paper presents a currently the most efficient algorithm for maximizing general non-negative submodular objective functions subject to $k$-extendible system constraints. Combining the sampling process and the decreasing threshold strategy, our algorithm Sample Decreasing Threshold Greedy Algorithm (SDTGA) obtains an expected approximation guarantee of ($p-epsilon$) for monotone submodular functions and of ($p(1-p)-epsilon$) for non-monotone cases with expected computational complexity of only $O(frac{pn}{epsilon}lnfrac{r}{epsilon})$, where $r$ is the largest size of the feasible solutions, $0<p leq frac{1}{1+k}$ is the sampling probability and $0< epsilon < p$. If we fix the sampling probability $p$ as $frac{1}{1+k}$, we get the best approximation ratios for both monotone and non-monotone submodular functions which are $(frac{1}{1+k}-epsilon)$ and $(frac{k}{(1+k)^2}-epsilon)$ respectively. While the parameter $epsilon$ exists for the trade-off between the approximation ratio and the time complexity. Therefore, our algorithm can handle larger scale of submodular maximization problems than existing algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا