Do you want to publish a course? Click here

Photon Gas at the Planck Scale within the Doubly Special Relativity

64   0   0.0 ( 0 )
 Added by Alexandre Gavrilik
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Within the approach to doubly special relativity (DSR) suggested by Magueijo and Smolin, a new algebraically justified rule of so-called $kappa$-addition for the energies of identical particles is proposed. This rule permits to introduce the nonlinear $kappa$-dependent Hamiltonian for one-mode multi-photon (sub)system. On its base, with different modes treated as independent, the thermodynamics of black-body radiation is explored within DSR, and main thermodynamic quantities are obtained. In their derivation, we use both the analytical tools within mean field approximation (MFA) and numerical evaluations based on exact formulas. The entropy of one-mode subsystem turns out to be finite (bounded). Another unusual result is the existence of threshold temperature above which radiation is present. Specific features of the obtained results are explained and illustrated with a number of plots. Comparison with some works of relevance is given.



rate research

Read More

The current status of Doubly Special Relativity research program is shortly presented. I dedicate this paper to my teacher and friend Professor Jerzy Lukierski on occasion of his seventieth birthday.
We show that depending on the direction of deformation of $kappa$-Poincare algebra (time-like, space-like, or light-like) the associated phase spaces of single particle in Doubly Special Relativity theories have the energy-momentum spaces of the form of de Sitter, anti-de Sitter, and flat space, respectively.
We discuss a way to obtain the doubly special relativity kinematical rules (the deformed energy-momentum relation and the nonlinear Lorentz transformations of momenta) starting from a singular Lagrangian action of a particle with linearly realized SO(1,4) symmetry group. The deformed energy-momentum relation appears in a special gauge of the model. The nonlinear transformations of momenta arise from the requirement of covariance of the chosen gauge.
Scalar fields, $phi_i$ can be coupled non-minimally to curvature and satisfy the general criteria: (i) the theory has no mass input parameters, including the Planck mass; (ii) the $phi_i$ have arbitrary values and gradients, but undergo a general expansion and relaxation to constant values that satisfy a nontrivial constraint, $K(phi_i) =$ constant; (iii) this constraint breaks scale symmetry spontaneously, and the Planck mass is dynamically generated; (iv) there can be adequate inflation associated with slow roll in a scale invariant potential subject to the constraint; (v) the final vacuum can have a small to vanishing cosmological constant (vi) large hierarchies in vacuum expectation values can naturally form; (vii) there is a harmless dilaton which naturally eludes the usual constraints on massless scalars. These models are governed by a global Weyl scale symmetry and its conserved current, $K_mu$ . At the quantum level the Weyl scale symmetry can be maintained by an invariant specification of renormalized quantities.
In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction $Phi^4$ term we investigate the modified conservation laws. We show that the local interactions on $kappa$-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا