Do you want to publish a course? Click here

Network Optimization for Unified Packet and Circuit Switched Networks

124   0   0.0 ( 0 )
 Added by Ping Yin
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Internet traffic continues to grow relentlessly, driven largely by increasingly high resolution video content. Although studies have shown that the majority of packets processed by Internet routers are pass-through traffic, they nonetheless have to be queued and routed at every hop in current networks, which unnecessarily adds substantial delays and processing costs. Such pass-through traffic can be better circuit-switched through the underlying optical transport network by means of pre-established circuits, which is possible in a unified packet and circuit switched network. In this paper, we propose a novel convex optimization framework based on a new destination-based multicommodity flow formulation for the allocation of circuits in such unified networks. In particular, we consider two deployment settings, one based on real-time traffic monitoring, and the other relying upon history-based traffic predictions. In both cases, we formulate global network optimization objectives as concave functions that capture the fair sharing of network capacity among competing traffic flows. The convexity of our problem formulations ensures globally optimal solutions.



rate research

Read More

The packet is the fundamental unit of transportation in modern communication networks such as the Internet. Physical layer scheduling decisions are made at the level of packets, and packet-level models with exogenous arrival processes have long been employed to study network performance, as well as design scheduling policies that more efficiently utilize network resources. On the other hand, a user of the network is more concerned with end-to-end bandwidth, which is allocated through congestion control policies such as TCP. Utility-based flow-level models have played an important role in understanding congestion control protocols. In summary, these two classes of models have provided separate insights for flow-level and packet-level dynamics of a network.
Dynamic circuits are well suited for applications that require predictable service with a constant bit rate for a prescribed period of time, such as cloud computing and e-science applications. Past research on upstream transmission in passive optical networks (PONs) has mainly considered packet-switched traffic and has focused on optimizing packet-level performance metrics, such as reducing mean delay. This study proposes and evaluates a dynamic circuit and packet PON (DyCaPPON) that provides dynamic circuits along with packet-switched service. DyCaPPON provides $(i)$ flexible packet-switched service through dynamic bandwidth allocation in periodic polling cycles, and $(ii)$ consistent circuit service by allocating each active circuit a fixed-duration upstream transmission window during each fixed-duration polling cycle. We analyze circuit-level performance metrics, including the blocking probability of dynamic circuit requests in DyCaPPON through a stochastic knapsack-based analysis. Through this analysis we also determine the bandwidth occupied by admitted circuits. The remaining bandwidth is available for packet traffic and we conduct an approximate analysis of the resulting mean delay of packet traffic. Through extensive numerical evaluations and verifying simulations we demonstrate the circuit blocking and packet delay trade-offs in DyCaPPON.
We introduce PULSE, a sub-microsecond optical circuit-switched data centre network architecture controlled by distributed hardware schedulers. PULSE is a flat architecture that uses parallel passive coupler-based broadcast and select networks. We employ a novel transceiver architecture, for dynamic wavelength-timeslot selection, to achieve a reconfiguration time down to O(100ps), establishing timeslots of O(10ns). A novel scheduling algorithm that has a clock period of 2.3ns performs multiple iterations to maximize throughput, wavelength usage and reduce latency, enhancing the overall performance. In order to scale, the single-hop PULSE architecture uses sub-networks that are disjoint by using multiple transceivers for each node in 64 node racks. At the reconfiguration circuit duration (epoch = 120 ns), the scheduling algorithm is shown to achieve up to 93% throughput and 100% wavelength usage of 64 wavelengths, incurring an average latency that ranges from 0.7-1.2 microseconds with best-case 0.4 microsecond median and 5 microsecond tail latency, limited by the timeslot (20 ns) and epoch size (120 ns). We show how the 4096-node PULSE architecture allows up to 260k optical channels to be re-used across sub-networks achieving a capacity of 25.6 Pbps with an energy consumption of 85 pJ/bit.
The energy consumption in wireless multimedia sensor networks (WMSN) is much greater than that in traditional wireless sensor networks. Thus, it is a huge challenge to remain the perpetual operation for WMSN. In this paper, we propose a new heterogeneous energy supply model for WMSN through the coexistence of renewable energy and electricity grid. We address to cross-layer optimization for the multiple multicast with distributed source coding and intra-session network coding in heterogeneous powered wireless multimedia sensor networks (HPWMSN) with correlated sources. The aim is to achieve the optimal reconstruct distortion at sinks and the minimal cost of purchasing electricity from electricity grid. Based on the Lyapunov drift-plus-penalty with perturbation technique and dual decomposition technique, we propose a fully distributed dynamic cross-layer algorithm, including multicast routing, source rate control, network coding, session scheduling and energy management, only requiring knowledge of the instantaneous system state. The explicit trade-off between the optimization objective and queue backlog is theoretically proven. Finally, the simulation results verify the theoretic claims.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا