The ARMA Point Process and its Estimation


Abstract in English

We introduce the ARMA (autoregressive-moving-average) point process, which is a Hawkes process driven by a Neyman-Scott process with Poisson immigration. It contains both the Hawkes and Neyman-Scott process as special cases and naturally combines self-exciting and shot-noise cluster mechanisms, useful in a variety of applications. The name ARMA is used because the ARMA point process is an appropriate analogue of the ARMA time series model for integer-valued series. As such, the ARMA point process framework accommodates a flexible family of models sharing methodological and mathematical similarities with ARMA time series. We derive an estimation procedure for ARMA point processes, as well as the integer ARMA models, based on an MCEM (Monte Carlo Expectation Maximization) algorithm. This powerful framework for estimation accommodates trends in immigration, multiple parametric specifications of excitement functions, as well as cases where marks and immigrants are not observed.

Download