Do you want to publish a course? Click here

The Globular Cluster Systems of Ultra-Diffuse Galaxies in the Coma Cluster

137   0   0.0 ( 0 )
 Added by Sungsoon Lim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-diffuse galaxies (UDGs) are unusual galaxies with low luminosities, similar to classical dwarf galaxies, but sizes up to $sim!5$ larger than expected for their mass. Some UDGs have large populations of globular clusters (GCs), something unexpected in galaxies with such low stellar density and mass. We have carried out a comprehensive study of GCs in both UDGs and classical dwarf galaxies at comparable stellar masses using HST observations of the Coma cluster. We present new imaging for 33 Dragonfly UDGs with the largest effective radii ($>2$ kpc), and additionally include 15 UDGs and 54 classical dwarf galaxies from the HST/ACS Coma Treasury Survey and the literature. Out of a total of 48 UDGs, 27 have statistically significant GC systems, and 11 have candidate nuclear star clusters. The GC specific frequency ($S_N$) varies dramatically, with the mean $S_N$ being higher for UDGs than for classical dwarfs. At constant stellar mass, galaxies with larger sizes (or lower surface brightnesses) have higher $S_N$, with the trend being stronger at higher stellar mass. At lower stellar masses, UDGs tend to have higher $S_N$ when closer to the center of the cluster, i.e., in denser environments. The fraction of UDGs with a nuclear star cluster also depends on environment, varying from $sim!40$% in the cluster core, where it is slightly lower than the nucleation fraction of classical dwarfs, to $lesssim20%$ in the outskirts. Collectively, we observe an unmistakable diversity in the abundance of GCs, and this may point to multiple formation routes.



rate research

Read More

We present Hubble Space Telescope imaging of two ultra diffuse galaxies (UDGs) with measured stellar velocity dispersions in the Coma cluster. The galaxies, Dragonfly 44 and DFX1, have effective radii of 4.7 kpc and 3.5 kpc and velocity dispersions of $47^{+8}_{-6}$ km/s and $30^{+7}_{-7}$ km/s, respectively. Both galaxies are associated with a striking number of compact objects, tentatively identified as globular clusters: $N_{rm gc}=74pm 18$ for Dragonfly 44 and $N_{rm gc}=62pm 17$ for DFX1. The number of globular clusters is far higher than expected from the luminosities of the galaxies but is consistent with expectations from the empirical relation between dynamical mass and globular cluster count defined by other galaxies. Combining our data for these two objects with previous HST observations of Coma UDGs we find that UDGs have a factor of $6.9^{+1.0}_{-2.4}$ more globular clusters than other galaxies of the same luminosity, in contrast to a recent study of a similar sample by Amorisco et al. (2017), but consistent with earlier results for individual galaxies. The Harris et al. (2017) relation between globular cluster count and dark matter halo mass implies a median halo mass of $M_{rm halo}sim 1.5times 10^{11},{rm M}_{odot}$ for the sixteen Coma UDGs that have been observed with HST so far, with the largest and brightest having $M_{rm halo}sim 5times 10^{11},{rm M}_{odot}$.
160 - Jin Koda 2015
We report the discovery of 854 ultra diffuse galaxies (UDGs) in the Coma cluster using deep R band images, with partial B, i, and Halpha band coverage, obtained with the Subaru telescope. Many of them (332) are Milky Way-sized with very large effective radii of r_e>1.5kpc. This study was motivated by the recent discovery of 47 UDGs by van-Dokkum et al. (2015); our discovery suggests >1,000 UDGs after accounting for the smaller Subaru field. The new UDGs show a distribution concentrated around the cluster center, strongly suggesting that the great majority are (likely longtime) cluster members. They are a passively evolving population, lying along the red sequence in the CM diagram with no Halpha signature. Star formation was, therefore, quenched in the past. They have exponential light profiles, effective radii re ~ 800 pc- 5 kpc, effective surface brightnesses mu_e(R)=25-28 mag arcsec-2, and stellar masses ~1x10^7 - 5x10^8Msun. There is also a population of nucleated UDGs. Some MW-sized UDGs appear closer to the cluster center than previously reported; their survival in the strong tidal field, despite their large sizes, possibly indicates a large dark matter fraction protecting the diffuse stellar component. The indicated baryon fraction ~<1% is less than the cosmic average, and thus the gas must have been removed from the possibly massive dark halo. The UDG population appears to be elevated in the Coma cluster compared to the field, indicating that the gas removal mechanism is related primarily to the cluster environment.
Ultra diffuse galaxies (UDGs) reveal extreme properties. Here we compile the largest study to date of 85 globular cluster (GC) systems around UDGs in the Coma cluster, using new deep ground-based imaging of the known UDGs and existing imaging from the Hubble Space Telescope of their GC systems. We find that the richness of GC systems in UDGs generally exceeds that found in normal dwarf galaxies of the same stellar mass. These GC-rich UDGs imply halos more massive than expected from the standard stellar mass-halo mass relation. The presence of such overly massive halos presents a significant challenge to the latest simulations of UDGs in cluster environments. In some exceptional cases, the mass in the GC system is a significant fraction of the stellar content of the host galaxy. We find that rich GC systems tend to be hosted in UDGs of lower luminosity, smaller size and fainter surface brightness. Similar trends are seen for normal dwarf galaxies in the Coma cluster. A toy model is presented in which the GC-rich UDGs are assumed to be `failed galaxies within massive halos that have largely old, metal-poor, alpha-element enhanced stellar populations. On the other hand, GC-poor UDGs are more akin to normal, low surface brightness dwarfs that occupy less massive dark matter halos. Additional data on the stellar populations of UDGs with GC systems will help to further refine and test this simplistic model.
We present a study of ultra-diffuse galaxies (UDGs) in the Virgo Cluster based on deep imaging from the Next Generation Virgo Cluster Survey (NGVS). Applying a new definition for the UDG class based on galaxy scaling relations, we define samples of 44 and 26 UDGs using expansive and restrictive selection criteria, respectively. Our UDG sample includes objects that are significantly fainter than previously known UDGs: i.e., more than half are fainter than $langlemurangle_e sim27.5$ mag arcsec$^{-2}$. The UDGs in Virgos core region show some evidence for being structurally distinct from normal dwarf galaxies, but this separation disappears when considering the full sample of galaxies throughout the cluster. UDGs are more centrally concentrated in their spatial distribution than other Virgo galaxies of similar luminosity, while their morphologies demonstrate that at least some UDGs owe their diffuse nature to physical processes---such as tidal interactions or low-mass mergers---that are at play within the cluster environment. The globular cluster (GC) systems of Virgo UDGs have a wide range in specific frequency ($S_N$), with a higher mean $S_N$ than normal Virgo dwarfs, but a lower mean $S_N$ than Coma UDGs at fixed luminosity. Their GCs are predominantly blue, with a small contribution from red clusters in the more massive UDGs. The combined GC luminosity function is consistent with those observed in dwarf galaxies, showing no evidence of being anomalously luminous. The diversity in their morphologies and their GC properties suggests no single process has given rise to all objects within the UDG class. Based on the available evidence, we conclude that UDGs are simply those systems that occupy the extended tails of the galaxy size and surface brightness distributions.
We present Keck/DEIMOS spectroscopy of globular clusters (GCs) around the ultra-diffuse galaxies (UDGs) VLSB-B, VLSB-D, and VCC615 located in the central regions of the Virgo cluster. We spectroscopically identify 4, 12, and 7 GC satellites of these UDGs, respectively. We find that the three UDGs have systemic velocities ($V_{sys}$) consistent with being in the Virgo cluster, and that they span a wide range of velocity dispersions, from $sim 16$ to $sim 47$ km/s, and high dynamical mass-to-light ratios within the radius that contains half the number of GCs ($ 407^{+916}_{-407}$, $21^{+15}_{-11}$, $60^{+65}_{-38}$, respectively). VLSB-D shows possible evidence for rotation along the stellar major axis and its $V_{sys}$ is consistent with that of the massive galaxy M84 and the center of the Virgo cluster itself. These findings, in addition to having a dynamically and spatially ($sim 1$ kpc) off-centered nucleus and being extremely elongated, suggest that VLSB-D could be tidally perturbed. On the contrary, VLSB-B and VCC615 show no signals of tidal deformation. Whereas the dynamics of VLSB-D suggest that it has a less massive dark matter halo than expected for its stellar mass, VLSB-B and VCC615 are consistent with a $sim 10^{12}$ M$_{odot}$ dark matter halo. Although our samples of galaxies and GCs are small, these results suggest that UDGs may be a diverse population, with their low surface brightnesses being the result of very early formation, tidal disruption, or a combination of the two.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا