Group Partitions via Commutativity and Related Topics


Abstract in English

Let $G$ be a nonabelian group, $Asubseteq G$ an abelian subgroup and $ngeqslant 2$ an integer. We say that $G$ has an $n$-abelian partition with respect to $A$, if there exists a partition of $G$ into $A$ and $n$ disjoint commuting subsets $A_1, A_2, ldots, A_n$ of $G$, such that $|A_i|>1$ for each $i=1, 2, ldots, n$. We first classify all nonabelian groups, up to isomorphism, which have an $n$-abelian partition for $n=2, 3$. Then, we provide some formulas concerning the number of spanning trees of commuting graphs associated with certain finite groups. Finally, we point out some ways to finding the number of spanning trees of the commuting graphs of some specific groups.

Download