Do you want to publish a course? Click here

Light and shadow in the Galactic Center - On the detection of the relativistic periastron shift of star S2 in the Galactic Center

148   0   0.0 ( 0 )
 Added by Andreas Eckart
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the nature of prominent sources of light and shadow in the Galactic Center. With respect to the Bremsstrahlung X-ray emission of the hot plasma in that region the Galactic Center casts a shadow. The shadow is caused by the Circum Nuclear Disk that surrounds SgrA* at a distance of about 1 to 2 parsec. This detection allows us to do a detailed investigation of the physical properties of the surroundings of the super massive black hole. Further in, the cluster of high velocity stars orbiting the central super massive black hole SgrA* represents an ideal probe for the gravitational potential and the degree of relativity that one can attribute to this area. Recently, three of the closest stars (S2, S38, and S55/S0-102) have been used to conduct these investigations. In addition to the black hole mass and distance a relativistic parameter defined as ${Upsilon}=r_s/r_p$ could be derived for star S2. The quantity $r_s$ is the Schwarzschild radius and $r_p$ is the pericenter distance of the orbiting star. Here, in this publication, we highlight the robustness and significance of this result. If one aims at investigating stronger relativistic effects one needs to get closer to SgrA*. Here, one can use the emission of plasma blobs that orbit SgrA*. This information can be obtained by modeling lightcurves of bright X-ray flares. Finally, we comment on the shadow of the SgrA* black hole expected due to light bending and boosting in its vicinity.



rate research

Read More

361 - F. Martins 2007
We analyze the properties of the star S2 orbiting the supermassive black hole at the center of the Galaxy. A high quality SINFONI H and K band spectrum obtained from coadding 23.5 hours of observation between 2004 and 2007 reveals that S2 is an early B dwarf (B0-2.5V). Using model atmospheres, we constrain its stellar and wind properties. We show that S2 is a genuine massive star, and not the core of a stripped giant star as sometimes speculated to resolve the problem of star formation so close to the supermassive black hole. We give an upper limit on its mass loss rate, and show that it is He enriched, possibly because of the presence of a magnetic field.
164 - Jens Kauffmann 2016
Research on Galactic Center star formation is making great advances, in particular due to new data from interferometers spatially resolving molecular clouds in this environment. These new results are discussed in the context of established knowledge about the Galactic Center. Particular attention is paid to suppressed star formation in the Galactic Center and how it might result from shallow density gradients in molecular clouds.
145 - Jens Kauffmann 2017
A brief overview of recent advances in the study of star formation in the Galactic Center (GC) environment is presented. Particular attention is paid to new insights concerning the suppression of star formation in GC molecular clouds. Another focus is the question whether the GC can be used as a template for the understanding of starburst galaxies in the nearby and distant universe: this must be done with care. Some of the particular conditions in the center of the Milky Way do not necessarily play a role in starburst galaxies.
We report Suzaku results for soft X-ray emission to the south of the Galactic center (GC). The emission (hereafter GC South) has an angular size of ~42 x 16 centered at (l, b) ~ (0.0, -1.4), and is located in the largely extended Galactic ridge X-ray emission (GRXE). The X-ray spectrum of GC South exhibits emission lines from highly ionized atoms. Although the X-ray spectrum of the GRXE can be well fitted with a plasma in collisional ionization equilibrium (CIE), that of GC South cannot be fitted with a plasma in CIE, leaving hump-like residuals at ~2.5 and 3.5 keV, which are attributable to the radiative recombination continua of the K-shells of Si and S, respectively. In fact, GC South spectrum is well fitted with a recombination-dominant plasma model; the electron temperature is 0.46 keV while atoms are highly ionized (kT = 1.6 keV) in the initial epoch, and the plasma is now in a recombining phase at a relaxation scale (plasma density x elapsed time) of 5.3 x 10^11 s cm^-3. The absorption column density of GC South is consistent with that toward the GC region. Thus GC South is likely to be located in the GC region (~8 kpc distance). The size of the plasma, the mean density, and the thermal energy are estimated to be 97 pc x 37 pc, 0.16 cm^-3, and 1.6 x 10^51 erg, respectively. We discuss possible origins of the recombination-dominant plasma as a relic of past activity in the GC region.
Fermi has discovered two giant gamma-ray-emitting bubbles that extend nearly 10 kpc in diameter. We propose that periodic star capture processes by the galactic supermassive black hole, Sgr A*, with a capture rate $<10^{-5}$ yr$^{-1}$ and energy release $sim 10^{52}$ erg per one capture can produce shocks in the halo, which accelerate electrons to the energy ~ 1 TeV. These electrons generate radio emission via synchrotron radiation, and gamma-rays via inverse Compton scattering with the relic and the galactic soft photons. Estimates of the diffusion coefficient from the observed gamma-ray flux explains consistently the necessary maximum energy of electrons and sharp edges of the bubble.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا