Do you want to publish a course? Click here

Face Sketch Synthesis Style Similarity:A New Structure Co-occurrence Texture Measure

83   0   0.0 ( 0 )
 Added by Deng-Ping Fan
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Existing face sketch synthesis (FSS) similarity measures are sensitive to slight image degradation (e.g., noise, blur). However, human perception of the similarity of two sketches will consider both structure and texture as essential factors and is not sensitive to slight (pixel-level) mismatches. Consequently, the use of existing similarity measures can lead to better algorithms receiving a lower score than worse algorithms. This unreliable evaluation has significantly hindered the development of the FSS field. To solve this problem, we propose a novel and robust style similarity measure called Scoot-measure (Structure CO-Occurrence Texture Measure), which simultaneously evaluates block-level spatial structure and co-occurrence texture statistics. In addition, we further propose 4 new meta-measures and create 2 new datasets to perform a comprehensive evaluation of several widely-used FSS measures on two large databases. Experimental results demonstrate that our measure not only provides a reliable evaluation but also achieves significantly improved performance. Specifically, the study indicated a higher degree (78.8%) of correlation between our measure and human judgment than the best prior measure (58.6%). Our code will be made available.



rate research

Read More

221 - Chaofeng Chen , Xiao Tan , 2020
In this paper, we propose a novel framework based on deep neural networks for face sketch synthesis from a photo. Imitating the process of how artists draw sketches, our framework synthesizes face sketches in a cascaded manner. A content image is first generated that outlines the shape of the face and the key facial features. Textures and shadings are then added to enrich the details of the sketch. We utilize a fully convolutional neural network (FCNN) to create the content image, and propose a style transfer approach to introduce textures and shadings based on a newly proposed pyramid column feature. We demonstrate that our style transfer approach based on the pyramid column feature can not only preserve more sketch details than the common style transfer method, but also surpasses traditional patch based methods. Quantitative and qualitative evaluations suggest that our framework outperforms other state-of-the-arts methods, and can also generalize well to different test images. Codes are available at https://github.com/chaofengc/Face-Sketch
179 - Chaofeng Chen , Wei Liu , Xiao Tan 2018
Face sketch synthesis has made great progress in the past few years. Recent methods based on deep neural networks are able to generate high quality sketches from face photos. However, due to the lack of training data (photo-sketch pairs), none of such deep learning based methods can be applied successfully to face photos in the wild. In this paper, we propose a semi-supervised deep learning architecture which extends face sketch synthesis to handle face photos in the wild by exploiting additional face photos in training. Instead of supervising the network with ground truth sketches, we first perform patch matching in feature space between the input photo and photos in a small reference set of photo-sketch pairs. We then compose a pseudo sketch feature representation using the corresponding sketch feature patches to supervise our network. With the proposed approach, we can train our networks using a small reference set of photo-sketch pairs together with a large face photo dataset without ground truth sketches. Experiments show that our method achieve state-of-the-art performance both on public benchmarks and face photos in the wild. Codes are available at https://github.com/chaofengc/Face-Sketch-Wild.
Existing compression methods typically focus on the removal of signal-level redundancies, while the potential and versatility of decomposing visual data into compact conceptual components still lack further study. To this end, we propose a novel conceptual compression framework that encodes visual data into compact structure and texture representations, then decodes in a deep synthesis fashion, aiming to achieve better visual reconstruction quality, flexible content manipulation, and potential support for various vision tasks. In particular, we propose to compress images by a dual-layered model consisting of two complementary visual features: 1) structure layer represented by structural maps and 2) texture layer characterized by low-dimensional deep representations. At the encoder side, the structural maps and texture representations are individually extracted and compressed, generating the compact, interpretable, inter-operable bitstreams. During the decoding stage, a hierarchical fusion GAN (HF-GAN) is proposed to learn the synthesis paradigm where the textures are rendered into the decoded structural maps, leading to high-quality reconstruction with remarkable visual realism. Extensive experiments on diverse images have demonstrated the superiority of our framework with lower bitrates, higher reconstruction quality, and increased versatility towards visual analysis and content manipulation tasks.
Sketch-based image retrieval (SBIR) is a cross-modal matching problem which is typically solved by learning a joint embedding space where the semantic content shared between photo and sketch modalities are preserved. However, a fundamental challenge in SBIR has been largely ignored so far, that is, sketches are drawn by humans and considerable style variations exist amongst different users. An effective SBIR model needs to explicitly account for this style diversity, crucially, to generalise to unseen user styles. To this end, a novel style-agnostic SBIR model is proposed. Different from existing models, a cross-modal variational autoencoder (VAE) is employed to explicitly disentangle each sketch into a semantic content part shared with the corresponding photo, and a style part unique to the sketcher. Importantly, to make our model dynamically adaptable to any unseen user styles, we propose to meta-train our cross-modal VAE by adding two style-adaptive components: a set of feature transformation layers to its encoder and a regulariser to the disentangled semantic content latent code. With this meta-learning framework, our model can not only disentangle the cross-modal shared semantic content for SBIR, but can adapt the disentanglement to any unseen user style as well, making the SBIR model truly style-agnostic. Extensive experiments show that our style-agnostic model yields state-of-the-art performance for both category-level and instance-level SBIR.
Imagining a colored realistic image from an arbitrarily drawn sketch is one of the human capabilities that we eager machines to mimic. Unlike previous methods that either requires the sketch-image pairs or utilize low-quantity detected edges as sketches, we study the exemplar-based sketch-to-image (s2i) synthesis task in a self-supervised learning manner, eliminating the necessity of the paired sketch data. To this end, we first propose an unsupervised method to efficiently synthesize line-sketches for general RGB-only datasets. With the synthetic paired-data, we then present a self-supervised Auto-Encoder (AE) to decouple the content/style features from sketches and RGB-images, and synthesize images that are both content-faithful to the sketches and style-consistent to the RGB-images. While prior works employ either the cycle-consistence loss or dedicated attentional modules to enforce the content/style fidelity, we show AEs superior performance with pure self-supervisions. To further improve the synthesis quality in high resolution, we also leverage an adversarial network to refine the details of synthetic images. Extensive experiments on 1024*1024 resolution demonstrate a new state-of-art-art performance of the proposed model on CelebA-HQ and Wiki-Art datasets. Moreover, with the proposed sketch generator, the model shows a promising performance on style mixing and style transfer, which require synthesized images to be both style-consistent and semantically meaningful. Our code is available on https://github.com/odegeasslbc/Self-Supervised-Sketch-to-Image-Synthesis-PyTorch, and please visit https://create.playform.io/my-projects?mode=sketch for an online demo of our model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا