Do you want to publish a course? Click here

Computing the Tolman length for solid-liquid interfaces

60   0   0.0 ( 0 )
 Added by Bingqing Cheng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The curvature dependence of interfacial free energy, which is crucial in quantitatively predicting nucleation kinetics and the stability of bubbles and droplets, can be described in terms of the Tolman length {delta}. For solid-liquid interfaces, however,{delta} has never been computed directly due to various theoretical and practical challenges. Here we present a general method that enables the direct evaluation of the Tolman length from atomistic simulations of a solid-liquid planar interface in out-of-equilibrium conditions. This method works by first measuring the surface tension from the amplitude of thermal capillary fluctuations of a localized version of Gibbs dividing surface, and bythen computing the free energy difference between the surface of tension and the equimolar dividing surface. For benchmark purposes, we computed {delta}for a model potential, and compared the results to less rigorous indirect approaches.



rate research

Read More

We demonstrate that the multi-phase lattice Boltzmann method (LBM) yields a curvature dependent surface tension $sigma$ by means of three-dimensional hydrostatic droplets/bubbles simulations. Such curvature dependence is routinely characterized, at the first order, by the so-called {it Tolman length} $delta$. LBM allows to precisely compute $sigma$ at the surface of tension $R_s$, i.e. as a function of the droplet size, and determine the first order correction. The corresponding values of $delta$ display universality in temperature for different equations of state, following a power-law scaling near the critical point. The Tolman length has been studied so far mainly via computationally demanding molecular dynamics (MD) simulations or by means of density functional theory (DFT) approaches. It has proved pivotal in extending the classical nucleation theory and is expected to be paramount in understanding cavitation phenomena. The present results open a new hydrodynamic-compliant mesoscale arena, in which the fundamental role of the Tolman length, alongside real-world applications to cavitation phenomena, can be effectively tackled.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.
142 - Lyderic Bocquet 2013
In this paper, we propose a new derivation for the Green-Kubo relationship for the liquid-solid friction coefficient, characterizing hydrodynamic slippage at a wall. It is based on a general Langevin approach for the fluctuating wall velocity, involving a non-markovian memory kernel with vanishing time integral. The calculation highlights some subtleties of the wall-liquid dynamics, leading to superdiffusive motion of the fluctuating wall position.
We present precision neutron scattering measurements of the Bose-Einstein condensate fraction, n0(T), and the atomic momentum distribution, nstar(k), of liquid 4He at pressure p =24 bar. Both the temperature dependence of n0(T) and of the width of nstar(k) are determined. The n0(T) can be represented by n0(T) = n0(0)[1-(T/T{lambda}){gamma}] with a small n0(0) = 2.80pm0.20% and large {gamma} = 13pm2 for T < T{lambda} indicating strong interaction. The onset of BEC is accompanied by a significant narrowing of the nstar(k). The narrowing accounts for 65% of the drop in kinetic energy below T{lambda} and reveals an important coupling between BEC and k > 0 states. The experimental results are well reproduced by Path Integral Monte Carlo calculations.
The essential features of many interfaces driven out of equilibrium are described by the same equation---the Kardar-Parisi-Zhang (KPZ) equation. How do living interfaces, such as the cell membrane, fit into this picture? In an endeavour to answer such a question, we proposed in [F. Cagnetta, M. R. Evans, D. Marenduzzo, PRL 120, 258001 (2018)] an idealised model for the membrane of a moving cell. Here we discuss how the addition of simple ingredients inspired by the dynamics of the membrane of moving cells affects common kinetic roughening theories such as the KPZ and Edwards-Wilkinson equations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا