No Arabic abstract
Herbig-Haro flows are signposts of recent major accretion and outflow episodes. We aim to determine the nature and properties of the little-known outflow source HH 250-IRS, which is embedded in the Aquila clouds. We have obtained adaptive optics-assisted L-band images with the NACO instrument on the Very Large Telescope (VLT), together with N- and Q-band imaging with VISIR also on the VLT. Using the SINFONI instrument on the VLT we carried out H- and K-band integral field spectroscopy of HH 250-IRS, complemented with spectra obtained with the SpeX instrument at the InfraRed Telescope Facility (IRTF) in the JHKL bands. Finally, the SubMillimeter Array (SMA) interferometer was used to study the circumstellar environment of HH 250-IRS at 225 and 351 GHz with CO (2-1) and CO (3-2) maps and 0.9 mm and 1.3 mm continuum images. The HH 250-IRS source is resolved into a binary with 053 separation, corresponding to 120 AU at the adopted distance of 225 pc. The individual components show heavily veiled spectra with weak CO absorption indicative of late-type stars. Both are Class I sources, but their spectral energy distributions between 1.5 $mu$m and 19 $mu$m differ markedly and suggest the existence of a large cavity around one of the components. The millimeter interferometric observations indicate that the gas mainly traces a circumbinary envelope or disk, while the dust emission is dominated by one of the circumstellar envelopes. HH 250-IRS is a new addition to the handful of multiple systems where the individual stellar components, the circumstellar disks and a circumbinary disk can be studied in detail, and a rare case among those systems in which a Herbig-Haro flow is present.
Seeking to establish whether active region upflow material contributes to the slow solar wind, we examine in detail the plasma upflows from Active Region (AR)10978, which crossed the Suns disc in the interval 8 to 16 December, 2007 during Carrington rotation (CR)2064. In previous work, using data from the Hinode/EUV Imaging Spectrometer, upflow velocity evolution was extensively studied as the region crossed the disc while a linear force-free magnetic extrapolation was used to confirm aspects of the velocity evolution and to establish the presence of quasi-separatrix layers at the upflow source areas. The plasma properties, temperature, density and first ionisation potential bias (FIP-bias) were measured with the spectrometer during the disc passage of the active region. Global potential field source surface (PFSS) models showed that AR 10978 was completely covered by the closed field of a helmet streamer that is part of the streamer belt. Thus it is not clear how any of the upflowing AR-associated plasma could reach the source surface at 2.5 R(Sun)and contribute to the slow solar wind. However a detailed examination of solar-wind in-situ data obtained by the Advanced Composition Explorer (ACE) spacecraft at the L1 point shows that the increase in O^7+/O^6+, C^6+/C^5+ and Fe/O - a FIP-bias proxy - are present before the heliospheric current sheet crossing. These increases, along with an accompanying reduction in proton velocity and an increase in density are characteristic of both AR and slow-wind plasma. Finally we describe a two-step reconnection process by which some of the upflowing plasma from the AR could reach the heliosphere.
We present new [SII] images of the HH 30 jet and counterjet observed in 2006, 2007, and 2010 that allowed us to measure with improved accuracy the positions and proper motions of the jet and counterjet knots. Our results show that the motion of the knots is essentially ballistic, with the exception of the farthest knots, which trace the large scale C-shape bending of the jet. The observed bending of the jet can be produced by a relative motion of the HH 30 star with respect to its surrounding environment, caused either by a possible proper motion of the HH 30 star, or by the entrainment of environment gas by the red lobe of the nearby L1551-IRS 5 outflow. Alternatively, the bending can be produced by the stellar wind from a nearby CTTS, identified in the 2MASS catalog. The proper motion velocities of the knots of the counterjet show more variations than those of the jet. In particular, we identify two knots of the counterjet that have the same kinematic age but whose velocities differ by almost a factor of two. Thus, it appears that counterjet knots launched simultaneously can be ejected with very different velocities. We confirm that the observed wiggling of the jet and counterjet arises from the orbital motion of the jet source in a binary system. Precession is of secondary importance in shaping the jet. We derive an orbital period $tau_o=114pm2$ yr and a mass function $mmu_c^3=0.014pm0.006$ $M_odot$. For a mass of the system of $m=0.45pm0.04$ $M_odot$ (the value inferred from the disk kinematics) we obtain a mass $m_j=0.31pm0.04$ $M_odot$ for the jet source, a mass $m_c=0.14pm0.03$ $M_odot$ for the companion, and a binary separation of $a=18.0pm0.6$ AU. This binary separation coincides with the value required to account for the size of the inner hole observed in the disk, attributed to tidal truncation in a binary system.
Abridged. The 12CO/13CO ratio in the circumstellar envelope (CSE) of asymptotic giant branch (AGB) stars has been extensively used as the tracer of the photospheric 12C/13C ratio. However, spatially-resolved ALMA observations of R Scl, a carbon rich AGB star, have shown that the 12CO/13CO ratio is not consistent over the entire CSE. Hence, it can not necessarily be used as a tracer of the 12C/13C ratio. The most likely hypothesis to explain the observed discrepancy between the 12CO/13CO and 12C/13C ratios is CO isotopologue selective photodissociation by UV radiation. Unlike the CO isotopologue ratio, the HCN isotopologue ratio is not affected by UV radiation. Therefore, HCN isotopologue ratios can be used as the tracer of the atomic C ratio in UV irradiated regions. We have performed a detailed non-LTE excitation analysis of circumstellar H12CN and H13CN line emission around R Scl, observed with ALMA and APEX, using a radiative transfer code, ALI. The spatial extent of the molecular distribution for both isotopologues is constrained based on the spatially resolved H13CN(4-3) ALMA observations. We find fractional abundances of H12CN/H2 = (5.0 +- 2.0) x 10^{-5} and H13CN/H2 = (1.9 +- 0.4) x 10^{-6} in the inner wind (r < (2.0 +- 0.25) x 10^{15} cm) of R Scl. The derived circumstellar isotopologue ratio of H12CN/H13CN = 26.3 +- 11.9 is consistent with the photospheric ratio of 12C/13C ~ 19 pm 6. We show that the circumstellar H12CN/H13CN ratio traces the photospheric 12C/13C ratio. These results support the previously proposed explanation that CO isotopologue selective-shielding is the main factor responsible for the observed discrepancy between 12C/13C and 12CO/13CO ratios in the inner CSE of R Scl. This indicates that UV radiation impacts on the CO isotopologue ratio.
The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB stars, as well as planetary nebulae. Among others, ammonia has been found in circumstellar envelopes of C-rich AGB stars in amounts that significantly exceeded theoretical predictions for C-rich stars. Few scenarios have been proposed to resolve this problem: formation of ammonia behind the shock front, photochemical processes in the inner part of the envelope partly transparent to UV background radiation due to the clumpy structure of the gas, and formation of ammonia on dust grains. Careful analysis of observations may help to put constraints on one or another mechanism of ammonia formation. Here, we present results of the non-LTE radiative transfer modeling of ammonia transitions including a crucial process of radiative pumping via v$_2$ = 1 vibrational band (at $sim$10 $mu$m) for V Cyg. Only ground-based ammonia transition NH$_{3}$ J = 1$_{0}$ - 0$_{0}$ at 572.5 GHz has been observed by HIFI. Therefore, to determine abundance of ammonia we estimate a photodissociation radius of NH$_{3}$ using chemical model of the envelope consistent with dust grain properties concluded from the spectral energy distribution.
EC53 is an embedded protostar with quasi-periodic emission in the near-IR and sub-mm. We use ALMA high-resolution observations of continuum and molecular line emission to describe the circumstellar environment of EC 53. The continuum image reveals a disk with a flux that suggests a mass of 0.075 Msun, much less than the estimated mass in the envelope, and an in-band spectral index that indicates grain growth to centimeter sizes. Molecular lines trace the outflow cavity walls, infalling and rotating envelope, and/or the Keplerian disk. The rotation profile of the C17O 3-2 line emission cannot isolate the Keplerian motion clearly although the lower limit of the protostellar mass can be calculated as 0.3 +- 0.1 Msun if the Keplerian motion is adopted. The weak CH3OH emission, which is anti-correlated with the HCO+ 4-3 line emission, indicates that the water snow line is more extended than what expected from the current luminosity, attesting to bygone outburst events. The extended snow line may persist for longer at the disk surface because the lower density increases the freeze-out timescale of methanol and water.