Nonlinear processes are at the core of many optical technologies including lasers, information processing, sensing, and security, and require optimised materials suitable for nanoscale integration. Here we demonstrate the emergence of a strong bulk second-order nonlinear response in a composite plasmonic nanorod material comprised of centrosymmetric materials. The metamaterial provides equally strong generation of the p-polarized second harmonic light in response to both s- and p-polarized excitation. We develop an effective-medium description of the underlying physics, compare its predictions to the experimental results and analyze the limits of its applicability. We show that while the effective medium theory adequately describes the nonlinear polarization, the process of emission of second harmonic light cannot be described in the same framework. The work provides an understanding of the emergent nonlinear optical response in composites and opens a doorway to new nonlinear optical platform designs for integrated nonlinear photonics.