Do you want to publish a course? Click here

Grounded Objects and Interactions for Video Captioning

67   0   0.0 ( 0 )
 Added by Chih-Yao Ma
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We address the problem of video captioning by grounding language generation on object interactions in the video. Existing work mostly focuses on overall scene understanding with often limited or no emphasis on object interactions to address the problem of video understanding. In this paper, we propose SINet-Caption that learns to generate captions grounded over higher-order interactions between arbitrary groups of objects for fine-grained video understanding. We discuss the challenges and benefits of such an approach. We further demonstrate state-of-the-art results on the ActivityNet Captions dataset using our model, SINet-Caption based on this approach.



rate research

Read More

Automatic video captioning is challenging due to the complex interactions in dynamic real scenes. A comprehensive system would ultimately localize and track the objects, actions and interactions present in a video and generate a description that relies on temporal localization in order to ground the visual concepts. However, most existing automatic video captioning systems map from raw video data to high level textual description, bypassing localization and recognition, thus discarding potentially valuable information for content localization and generalization. In this work we present an automatic video captioning model that combines spatio-temporal attention and image classification by means of deep neural network structures based on long short-term memory. The resulting system is demonstrated to produce state-of-the-art results in the standard YouTube captioning benchmark while also offering the advantage of localizing the visual concepts (subjects, verbs, objects), with no grounding supervision, over space and time.
We study the problem of weakly supervised grounded image captioning. That is, given an image, the goal is to automatically generate a sentence describing the context of the image with each noun word grounded to the corresponding region in the image. This task is challenging due to the lack of explicit fine-grained region word alignments as supervision. Previous weakly supervised methods mainly explore various kinds of regularization schemes to improve attention accuracy. However, their performances are still far from the fully supervised ones. One main issue that has been ignored is that the attention for generating visually groundable words may only focus on the most discriminate parts and can not cover the whole object. To this end, we propose a simple yet effective method to alleviate the issue, termed as partial grounding problem in our paper. Specifically, we design a distributed attention mechanism to enforce the network to aggregate information from multiple spatially different regions with consistent semantics while generating the words. Therefore, the union of the focused region proposals should form a visual region that encloses the object of interest completely. Extensive experiments have demonstrated the superiority of our proposed method compared with the state-of-the-arts.
This report describes our solution for the VATEX Captioning Challenge 2020, which requires generating descriptions for the videos in both English and Chinese languages. We identified three crucial factors that improve the performance, namely: multi-view features, hybrid reward, and diverse ensemble. Based on our method of VATEX 2019 challenge, we achieved significant improvements this year with more advanced model architectures, combination of appearance and motion features, and careful hyper-parameters tuning. Our method achieves very competitive results on both of the Chinese and English video captioning tracks.
Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images. However, very limited work on NMN has been studied in the video-grounded language tasks. These tasks extend the complexity of traditional visual tasks with the additional visual temporal variance. Motivated by recent NMN approaches on image-grounded tasks, we introduce Video-grounded Neural Module Network (VGNMN) to model the information retrieval process in video-grounded language tasks as a pipeline of neural modules. VGNMN first decomposes all language components to explicitly resolve any entity references and detect corresponding action-based inputs from the question. The detected entities and actions are used as parameters to instantiate neural module networks and extract visual cues from the video. Our experiments show that VGNMN can achieve promising performance on two video-grounded language tasks: video QA and video-grounded dialogues.
98 - Aming Wu , Yahong Han 2020
Recent advances of video captioning often employ a recurrent neural network (RNN) as the decoder. However, RNN is prone to diluting long-term information. Recent works have demonstrated memory network (MemNet) has the advantage of storing long-term information. However, as the decoder, it has not been well exploited for video captioning. The reason partially comes from the difficulty of sequence decoding with MemNet. Instead of the common practice, i.e., sequence decoding with RNN, in this paper, we devise a novel memory decoder for video captioning. Concretely, after obtaining representation of each frame through a pre-trained network, we first fuse the visual and lexical information. Then, at each time step, we construct a multi-layer MemNet-based decoder, i.e., in each layer, we employ a memory set to store previous information and an attention mechanism to select the information related to the current input. Thus, this decoder avoids the dilution of long-term information. And the multi-layer architecture is helpful for capturing dependencies between frames and word sequences. Experimental results show that even without the encoding network, our decoder still could obtain competitive performance and outperform the performance of RNN decoder. Furthermore, compared with one-layer RNN decoder, our decoder has fewer parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا