No Arabic abstract
Quadratic functions have applications in cryptography. In this paper, we investigate the modular quadratic equation $$ ax^2+bx+c=0 quad (mod ,, 2^n), $$ and provide a complete analysis of it. More precisely, we determine when this equation has a solution and in the case that it has a solution, we not only determine the number of solutions, but also give the set of solutions in $O(n)$ time. One of the interesting results of our research is that, when this equation has a solution, then the number of solutions is a power of two.
Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z}, ngeq 2, xyz eq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Bakers theory and Bilu-Hanrot-Voutiers result on primitive divisors of Lucas numbers.
In this paper, we prove that the only primitive solutions of the equation $a^2+3b^6=c^n$ for $ngeq 3$ are $(a,b,c,n)=(pm 47,pm 2,pm 7,4)$. Our proof is based on the modularity of Galois representations of $mathbb Q$-curves and the work of Ellenberg for big values of $n$ and a variety of techniques for small $n$.
In this paper, we determine the primitive solutions of the Diophantine equation $(x-d)^2+x^2+(x+d)^2=y^n$ when $ngeq 2$ and $d=p^b$, $p$ a prime and $pleq 10^4$. The main ingredients are the characterization of primitive divisors on Lehmer sequences and the development of an algorithmic method of proving the non-existence of integer solutions of the equation $f(x)=a^b$, where $f(x)inmathbb Z[x]$, $a$ a positive integer and $b$ an arbitrary positive integer.
Let $K$ be a number field, and $S$ a finite set of places in $K$ containing all infinite places. We present an implementation for solving the $S$-unit equation $x + y = 1$, $x,y inmathscr{O}_{K,S}^times$ in the computer algebra package SageMath. This paper outlines the mathematical basis for the implementation. We discuss and reference the results of extensive computations, including exponent bounds for solutions in many fields of small degree for small sets $S$. As an application, we prove an asymptotic version of Fermats Last Theorem for totally real cubic number fields with bounded discriminant where 2 is totally ramified. In addition, we use the implementation to find all solutions to some cubic Ramanujan-Nagell equations.
This work determine the entire family of positive integer solutions of the diophantine equation. The solution is described in terms of $frac{(m-1)(m+n-2)}{2} $ or $frac{(m-1)(m+n-1)}{2}$ positive parameters depending on $n$ even or odd. We find the solution of a diophantine system of equations by using the solution of the diophantine equation. We generalized all the results of the paper [5].