Do you want to publish a course? Click here

Optical flickering of the symbiotic star CH Cyg

145   0   0.0 ( 0 )
 Added by Kiril Stoyanov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we present quasi-simultaneous observations of the flickering of the symbiotic binary star CH Cyg in U, B and V bands. We calculate the flickering source parameters and discuss the possible reason for the flickering cessation in the period 2010-2013.

rate research

Read More

We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.
The photospheric abundances for the cool component of the symbiotic star CH Cyg were calculated for the first time using high-resolution near-infrared spectra and the method of of standard LTE analysis and atmospheric models. The iron abundance for CH Cyg was found to be solar, [Fe/H] = 0.0+/-0.19. The atmospheric parameters and metallicity for CH Cyg are found to be approximately equal to those for nearby field M7 giants. The calculated [C/H] = -0.15, [N/H] = +0.16, [O/H] = -0.07, and the isotopic ratios of 12C/13C and 16O/17O are close to the mean values for single M giants that have experienced the first dredge-up. A reasonable explanation for the absence of barium star-like chemical peculiarities seems to be the high metallicity of CH Cyg. The emission line technique was explored for estimating CNO ratios in the wind of the giant.
177 - E. Pedretti 2009
We have detected asymmetry in the symbiotic star CH Cyg through the measurement of precision closure-phase with the IONIC beam combiner, at the IOTA interferometer. The position of the asymmetry changes with time and is correlated with the phase of the 2.1-yr period found in the radial velocity measurements for this star. We can model the time-dependent asymmetry either as the orbit of a low-mass companion around the M giant or as an asymmetric, 20% change in brightness across the M giant. We do not detect a change in the size of the star during a 3 year monitoring period neither with respect to time nor with respect to wavelength. We find a spherical dust-shell with an emission size of 2.2+/-0.1 D* FWHM around the M giant star. The star to dust flux ratio is estimated to be 11.63+/-0.3. While the most likely explanation for the 20% change in brightness is non-radial pulsation we argue that a low-mass companion in close orbit could be the physical cause of the pulsation. The combined effect of pulsation and low-mass companion could explain the behaviour revealed by the radial-velocity curves and the time-dependent asymmetry detected in the closure-phase data. If CH Cyg is a typical long secondary period variable then these variations could be explained by the effect of an orbiting low-mass companion on the primary star.
We performed photometry with a 1 minute time resolution of the symbiotic stars EF Aquilae, AG Pegasi and SU Lyncis in Johnson B and V band. Our observations of the symbiotic Mira-type star EF Aql demonstrate the presence of stochastic light variations with an amplitude of about 0.25 magnitudes on a time scale of 5 minutes. The observations prove the white dwarf nature of the hot component in the binary system. It is the 11th symbiotic star (among more than 200 symbiotic stars known in our Galaxy) which displays optical flickering. For SU Lyn we do not detect flickering with an amplitude above 0.03 mag in B band. For AG Peg, the amplitude of variability in B and V band is smaller than 0.05 mag and 0.04 mag respectively.
We analyse optical photometric data of short term variability (flickering) of the accreting white dwarf in the jet-ejecting symbiotic star MWC560. The observations are obtained in 17 nights during the period November 2011 - October 2019. The colour-magnitude diagram shows that the hot component of the system becomes redder as it gets brighter. For the flickering source we find that it has colour 0.14 < B-V < 0.40, temperature in the range 6300 < T_fl < 11000 K, and radius 1.2 < R_fl < 18 Rsun. We find a strong correlation (correlation coefficient 0.76, significance < 0.001) between B band magnitude and the average radius of the flickering source - as the brightness of the system increases the size of the flickering source also increases. The estimated temperature is similar to that of the bright spot of cataclysmic variables. In 2019 the flickering is missing, and the B-V colour of the hot component becomes bluer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا