A class of multi-resolution approximations for large spatial datasets


Abstract in English

Gaussian processes are popular and flexible models for spatial, temporal, and functional data, but they are computationally infeasible for large datasets. We discuss Gaussian-process approximations that use basis functions at multiple resolutions to achieve fast inference and that can (approximately) represent any spatial covariance structure. We consider two special cases of this multi-resolution-approximation framework, a taper version and a domain-partitioning (block) version. We describe theoretical properties and inference procedures, and study the computational complexity of the methods. Numerical comparisons and an application to satellite data are also provided.

Download