Do you want to publish a course? Click here

On the motivic Peterson conjecture

173   0   0.0 ( 0 )
 Added by Masaki Kameko
 Publication date 2017
  fields
and research's language is English
 Authors Masaki Kameko




Ask ChatGPT about the research

We show that the analogue of the Peterson conjecture on the action of Steenrod squares does not hold in motivic cohomology.



rate research

Read More

Fix the base field Q of rational numbers and let BP<n> denote the family of motivic truncated Brown-Peterson spectra over Q. We employ a local-to-global philosophy in order to compute the motivic Adams spectral sequence converging to the bi-graded homotopy groups of BP<n>. Along the way, we provide a new computation of the homotopy groups of BP<n> over the 2-adic rationals, prove a motivic Hasse principle for the spectra BP<n>, and deduce several classical and recent theorems about the K-theory of particular fields.
213 - Kyle M. Ormsby 2010
We provide a complete analysis of the motivic Adams spectral sequences converging to the bigraded coefficients of the 2-complete algebraic Johnson-Wilson spectra BPGL<n> over p-adic fields. These spectra interpolate between integral motivic cohomology (n=0), a connective version of algebraic K-theory (n=1), and the algebraic Brown-Peterson spectrum. We deduce that, over p-adic fields, the 2-complete BPGL<n> split over 2-complete BPGL<0>, implying that the slice spectral sequence for BPGL collapses. This is the first in a series of two papers investigating motivic invariants of p-adic fields, and it lays the groundwork for an understanding of the motivic Adams-Novikov spectral sequence over such base fields.
We determine systematic regions in which the bigraded homotopy sheaves of the motivic sphere spectrum vanish.
192 - J. Heller , K. Ormsby 2014
For a finite Galois extension of fields L/k with Galois group G, we study a functor from the G-equivariant stable homotopy category to the stable motivic homotopy category over k induced by the classical Galois correspondence. We show that after completing at a prime and eta (the motivic Hopf map) this results in a full and faithful embedding whenever k is real closed and L = k[i]. It is a full and faithful embedding after eta-completion if a motivic version of Serres finiteness theorem is valid. We produce strong necessary conditions on the field extension L/k for this functor to be full and faithful. Along the way, we produce several results on the stable C_2-equivariant Betti realization functor and prove convergence theorems for the p-primary C_2-equivariant Adams spectral sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا