Do you want to publish a course? Click here

The power of sum-of-squares for detecting hidden structures

70   0   0.0 ( 0 )
 Added by Samuel Hopkins
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time.



rate research

Read More

Estimation is the computational task of recovering a hidden parameter $x$ associated with a distribution $D_x$, given a measurement $y$ sampled from the distribution. High dimensional estimation problems arise naturally in statistics, machine learning, and complexity theory. Many high dimensional estimation problems can be formulated as systems of polynomial equations and inequalities, and thus give rise to natural probability distributions over polynomial systems. Sum-of-squares proofs provide a powerful framework to reason about polynomial systems, and further there exist efficient algorithms to search for low-degree sum-of-squares proofs. Understanding and characterizing the power of sum-of-squares proofs for estimation problems has been a subject of intense study in recent years. On one hand, there is a growing body of work utilizing sum-of-squares proofs for recovering solutions to polynomial systems when the system is feasible. On the other hand, a general technique referred to as pseudocalibration has been developed towards showing lower bounds on the degree of sum-of-squares proofs. Finally, the existence of sum-of-squares refutations of a polynomial system has been shown to be intimately connected to the existence of spectral algorithms. In this article we survey these developments.
301 - Boaz Barak , David Steurer 2014
In order to obtain the best-known guarantees, algorithms are traditionally tailored to the particular problem we want to solve. Two recent developments, the Unique Games Conjecture (UGC) and the Sum-of-Squares (SOS) method, surprisingly suggest that this tailoring is not necessary and that a single efficient algorithm could achieve best possible guarantees for a wide range of different problems. The Unique Games Conjecture (UGC) is a tantalizing conjecture in computational complexity, which, if true, will shed light on the complexity of a great many problems. In particular this conjecture predicts that a single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. The Sum-of-Squares (SOS) method is a general approach for solving systems of polynomial constraints. This approach is studied in several scientific disciplines, including real algebraic geometry, proof complexity, control theory, and mathematical programming, and has found applications in fields as diverse as quantum information theory, formal verification, game theory and many others. We survey some connections that were recently uncovered between the Unique Games Conjecture and the Sum-of-Squares method. In particular, we discuss new tools to rigorously bound the running time of the SOS method for obtaining approximate solutions to hard optimization problems, and how these tools give the potential for the sum-of-squares method to provide new guarantees for many problems of interest, and possibly to even refute the UGC.
We consider two problems that arise in machine learning applications: the problem of recovering a planted sparse vector in a random linear subspace and the problem of decomposing a random low-rank overcomplete 3-tensor. For both problems, the best known guarantees are based on the sum-of-squares method. We develop new algorithms inspired by analyses of the sum-of-squares method. Our algorithms achieve the same or similar guarantees as sum-of-squares for these problems but the running time is significantly faster. For the planted sparse vector problem, we give an algorithm with running time nearly linear in the input size that approximately recovers a planted sparse vector with up to constant relative sparsity in a random subspace of $mathbb R^n$ of dimension up to $tilde Omega(sqrt n)$. These recovery guarantees match the best known ones of Barak, Kelner, and Steurer (STOC 2014) up to logarithmic factors. For tensor decomposition, we give an algorithm with running time close to linear in the input size (with exponent $approx 1.086$) that approximately recovers a component of a random 3-tensor over $mathbb R^n$ of rank up to $tilde Omega(n^{4/3})$. The best previous algorithm for this problem due to Ge and Ma (RANDOM 2015) works up to rank $tilde Omega(n^{3/2})$ but requires quasipolynomial time.
We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between these relaxations and the Sum-of-Squares proof system to transform a *combining algorithm* -- an algorithm that maps a distribution over solutions into a (possibly weaker) solution -- into a *rounding algorithm* that maps a solution of the relaxation to a solution of the original problem. Using this approach, we obtain algorithms that yield improved results for natural variants of three well-known problems: 1) We give a quasipolynomial-time algorithm that approximates the maximum of a low degree multivariate polynomial with non-negative coefficients over the Euclidean unit sphere. Beyond being of interest in its own right, this is related to an open question in quantum information theory, and our techniques have already led to improved results in this area (Brand~{a}o and Harrow, STOC 13). 2) We give a polynomial-time algorithm that, given a d dimensional subspace of R^n that (almost) contains the characteristic function of a set of size n/k, finds a vector $v$ in the subspace satisfying $|v|_4^4 > c(k/d^{1/3}) |v|_2^2$, where $|v|_p = (E_i v_i^p)^{1/p}$. Aside from being a natural relaxation, this is also motivated by a connection to the Small Set Expansion problem shown by Barak et al. (STOC 2012) and our results yield a certain improvement for that problem. 3) We use this notion of L_4 vs. L_2 sparsity to obtain a polynomial-time algorithm with substantially improved guarantees for recovering a planted $mu$-sparse vector v in a random d-dimensional subspace of R^n. If v has mu n nonzero coordinates, we can recover it with high probability whenever $mu < O(min(1,n/d^2))$, improving for $d < n^{2/3}$ prior methods which intrinsically required $mu < O(1/sqrt(d))$.
We obtain the first polynomial-time algorithm for exact tensor completion that improves over the bound implied by reduction to matrix completion. The algorithm recovers an unknown 3-tensor with $r$ incoherent, orthogonal components in $mathbb R^n$ from $rcdot tilde O(n^{1.5})$ randomly observed entries of the tensor. This bound improves over the previous best one of $rcdot tilde O(n^{2})$ by reduction to exact matrix completion. Our bound also matches the best known results for the easier problem of approximate tensor completion (Barak & Moitra, 2015). Our algorithm and analysis extends seminal results for exact matrix completion (Candes & Recht, 2009) to the tensor setting via the sum-of-squares method. The main technical challenge is to show that a small number of randomly chosen monomials are enough to construct a degree-3 polynomial with precisely planted orthogonal global optima over the sphere and that this fact can be certified within the sum-of-squares proof system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا