We report the high-field induced magnetic phase in single crystal of U(Ru0.92Rh0.08)2Si2. Our neutron study combined with high-field magnetization, shows that the magnetic phase above the first metamagnetic transition at Hc1 = 21.6 T has an uncompensated commensurate antiferromagnetic structure with propagation vector Q2 = ( 2/3 0 0) possessing two single-Q domains. U moments of 1.45 (9) muB directed along the c axis are arranged in an up-up-down sequence propagating along the a axis, in agreement with bulk measurements. The U magnetic form factor at high fields is consistent with both the U3+ and U4+ type. The low field short-range order that emerges from the pure URu2Si2 due to Rh-doping is initially strengthened by the field but disappears in the field-induced phase. The tetragonal symmetry is preserved across the transition but the a axis lattice parameter increases already at low fields. Our results are in agreement with itinerant electron model with 5f states forming bands pinned in the vicinity of the Fermi surface that is significantly reconstructed by the applied magnetic field.