Do you want to publish a course? Click here

Giant collimated gamma-ray flashes

58   0   0.0 ( 0 )
 Added by Matteo Tamburini
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bright sources of high energy electromagnetic radiation are widely employed in fundamental research as well as in industry and medicine. This steadily growing interest motivated the construction of several facilities aiming at the realisation of sources of intense X- and gamma-ray pulses. To date, free electron lasers and synchrotrons provide intense sources of photons with energies up to 10-100 keV. Facilities under construction based on incoherent Compton back scattering of an optical laser pulse off an electron beam are expected to yield photon beams with energy up to 19.5 MeV and peak brilliance in the range 10$^{20}$-10$^{23}$ photons s$^{-1}$ mrad$^{-2}$ mm$^{-2}$ per 0.1% bandwidth. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission which occurs when a sufficiently dense electron beam interacts with a millimetre thickness solid target. For electron beam densities exceeding approximately $3times10^{19}text{ cm$^{-3}$}$ filamentation instability occurs with the self-generation of 10$^{7}$-10$^{8}$ gauss magnetic fields where the electrons of the beam are trapped. This results into a giant amplification of synchrotron emission with the production of collimated gamma-ray pulses with peak brilliance above $10^{25}$ photons s$^{-1}$ mrad$^{-2}$ mm$^{-2}$ per 0.1% bandwidth and photon energies ranging from 200 keV up to several hundreds MeV. These findings pave the way to compact, high-repetition-rate (kHz) sources of short (30 fs), collimated (mrad) and high flux ($>10^{12}$ photons/s) gamma-ray pulses.



rate research

Read More

411 - J. W. Belz 2020
In this paper we report the first close, high-resolution observations of downward-directed terrestrial gamma-ray flashes (TGFs) detected by the large-area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud-to-ground and low-altitude intracloud flashes, and that the IBPs are produced by a newly-identified streamer-based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark-like transient conducting events (TCEs) within the fast streamer system, and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub-pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub-pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP.
173 - M. Marisaldi , A. Argan , A. Trois 2010
Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earths atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.
196 - M. Marisaldi , A. Argan , A. Ursi 2016
At the end of March 2015 the onboard software configuration of the AGILE satellite was modified in order to disable the veto signal of the anticoincidence shield for the minicalorimeter instrument. The motivation for such a change was the understanding that the dead time induced by the anticoincidence prevented the detection of a large fraction of Terrestrial Gamma-Ray Flashes (TGFs). The configuration change was highly successful resulting in an increase of one order of magnitude in TGF detection rate. As expected, the largest fraction of the new events has short duration ($< 100 mathrm {mu s}$), and part of them has simultaneous association with lightning sferics detected by the World Wide Lightning Location Network (WWLLN). The new configuration provides the largest TGF detection rate surface density (TGFs/$mathrm{km^2}$/year) to date, opening prospects for improved correlation studies with lightning and atmospheric parameters on short spatial and temporal scales along the equatorial region.
AGILE is one of the satellites currently detecting terrestrial gamma-ray flashes (TGFs). In particular, the AGILE Mini-CALorimeter detected more than 2000 events in 8 years activity, by exploiting a unique sub-millisecond timescale trigger logic and high-energy range. A change in the onboard configuration enhanced the trigger capabilities for the detection of these events, overcoming dead time issues and enlarging the detection rate of these events up to $>$50 TGFs/month, allowing to reveal shorter duration flashes. The quasi-equatorial low-inclination ( 2.5$^{circ}$) orbit of AGILE allows for the detection of repeated TGFs coming from the same storms, at the same orbital passage and throughout successive orbital overpasses, over the same geographic region. All TGFs detected by AGILE are fulfilling a database that can be used for offline analysis and forthcoming studies. The limited number of missions currently detecting these brief terrestrial flashes makes the understanding of this phenomenon very challenging and, in this perspective, the AGILE satellite played and still plays a major role, helping shedding light to many aspects of TGF science
Terrestrial gamma ray flashes (TGFs) are very short bursts of gamma radiation associated to thunderstorm activity and are the manifestation of the highest-energy natural particle acceleration phenomena occurring on Earth. Photon energies up to several tens of megaelectronvolts are expected, but the actual upper limit and high-energy spectral shape are still open questions. Results published in 2011 by the AGILE team proposed a high-energy component in TGF spectra extended up to $approx$100 MeV, which is difficult to reconcile with the predictions from the Relativistic Runaway Electron Avalanche (RREA) mechanism at the basis of many TGF production models. Here we present a new set of TGFs detected by the AGILE satellite and associated to lightning measurements capable to solve this controversy. Detailed end-to-end Monte Carlo simulations and an improved understanding of the instrument performance under high-flux conditions show that it is possible to explain the observed high-energy counts by a standard RREA spectrum at the source, provided that the TGF is sufficiently bright and short. We investigate the possibility that single high-energy counts may be the signature of a fine-pulsed time structure of TGFs on time scales $approx$4 {mu}s, but we find no clear evidence for this. The presented data set and modeling results allow also for explaining the observed TGF distribution in the (Fluence x duration) parameter space and suggest that the AGILE TGF detection rate can almost be doubled. Terrestrial gamma ray flashes (TGFs) are very short bursts of gamma radiation associated to thunderstorm activity and are the manifestation of the highest-energy natural particle acceleration phenomena occurring on Earth. (...continues)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا