Do you want to publish a course? Click here

The Ramsey property for Banach spaces and Choquet simplices

168   0   0.0 ( 0 )
 Added by Jordi Lopez-Abad
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Gurarij space $mathbb{G}$ has extremely amenable automorphism group. This answers a question of Melleray and Tsankov. We also compute the universal minimal flow of the automorphism group of the Poulsen simplex $mathbb{P}$ and we prove that it consists of the canonical action on $mathbb{P}$ itself. This answers a question of Conley and T{o}rnquist. We show that the pointwise stabilizer of any closed proper face of $mathbb{P}$ is extremely amenable. Similarly, the pointwise stabilizer of any closed proper biface of the unit ball of the dual of the Gurarij space (the Lusky simplex) is extremely amenable. These results are obtained via several Kechris-Pestov-Todorcevic correspondences, by establishing the approximate Ramsey property for several classes of finite-dimensional Banach spaces and function systems and thei



rate research

Read More

The noncommutative Gurarij space $mathbb{mathbb{mathbb{NG}}}$, initially defined by Oikhberg, is a canonical object in the theory of operator spaces. As the Fra{i}ss{e} limit of the class of finite-dimensional nuclear operator spaces, it can be seen as the noncommutative analogue of the classical Gurarij Banach space. In this paper, we prove that the automorphism group of $mathbb{mathbb{NG}}$ is extremely amenable, i.e. any of its actions on compact spaces has a fixed point. The proof relies on the Dual Ramsey Theorem, and a version of the Kechris--Pestov--Todorcevic correspondence in the setting of operator spaces. Recent work of Davidson and Kennedy, building on previous work of Arveson, Effros, Farenick, Webster, and Winkler, among others, shows that nuclear operator systems can be seen as the noncommutative analogue of Choquet simplices. The analogue of the Poulsen simplex in this context is the matrix state space $mathbb{NP}$ of the Fra{i}ss{e} limit $A(mathbb{NP})$ of the class of finite-dimensional nuclear operator systems. We show that the canonical action of the automorphism group of $mathbb{NP}$ on the compact set $mathbb{NP}_1$ of unital linear functionals on $A(mathbb{NP})$ is minimal and it factors onto any minimal action, whence providing a description of the universal minimal flow of textrm{Aut}$left( mathbb{NP}% right) $.
We introduce a notion of noncommutative Choquet simplex, or briefly an nc simplex, that generalizes the classical notion of a simplex. While every simplex is an nc simplex, there are many more nc simplices. They arise naturally from C*-algebras and in noncommutative dynamics. We characterize nc simplices in terms of their geometry and in terms of structural properties of their corresponding operator systems. There is a natural definition of nc Bauer simplex that generalizes the classical definition of a Bauer simplex. We show that a compact nc convex set is an nc Bauer simplex if and only if it is affinely homeomorphic to the nc state space of a unital C*-algebra, generalizing a classical result of Bauer for unital commutative C*-algebras. We obtain several applications to noncommutative dynamics. We show that the set of nc states of a C*-algebra that are invariant with respect to the action of a discrete group is an nc simplex. From this, we obtain a noncommutative ergodic decomposition theorem with uniqueness. Finally, we establish a new characterization of discrete groups with Kazhdans property (T) that extends a result of Glasner and Weiss. Specifically, we show that a discrete group has property (T) if and only if for every action of the group on a unital C*-algebra, the set of invariant states is affinely homeomorphic to the state space of a unital C*-algebra.
For a topological group G, we show that a compact metric G-space is tame if and only if it can be linearly represented on a separable Banach space which does not contain an isomorphic copy of $l_1$ (we call such Banach spaces, Rosenthal spaces). With this goal in mind we study tame dynamical systems and their representations on Banach spaces.
186 - Enhui Shi , Hui Xu 2021
We show by a dynamical argument that there is a positive integer valued function $q$ defined on positive integer set $mathbb N$ such that $q([log n]+1)$ is a super-polynomial with respect to positive $n$ and [liminf_{nrightarrowinfty} rleft((2n+1)^2, q(n)right)<infty,] where $r( , )$ is the opposite-Ramsey number function.
In this note we study and obtain factorization theorems for colorings of matrices and Grassmannians over $mathbb{R}$ and ${mathbb{C}}$, which can be considered metr
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا