Do you want to publish a course? Click here

Seshadri constants for curve classes

131   0   0.0 ( 0 )
 Added by Aurel Mihai Fulger
 Publication date 2017
  fields
and research's language is English
 Authors Mihai Fulger




Ask ChatGPT about the research

We develop a local positivity theory for movable curves on projective varieties similar to the classical Seshadri constants of nef divisors. We give analogues of the Seshadri ampleness criterion, of a characterization of the augmented base locus of a big and nef divisor, and of the interpretation of Seshadri constants as an asymptotic measure of jet separation. We also study the case of arbitrary codimension.

rate research

Read More

We introduce Seshadri constants for line bundles in a relative setting. They generalize the classical Seshadri constants of line bundles on projective varieties and their extension to vector bundles studied by Beltrametti-Schneider-Sommese and Hacon. There are similarities to the classical theory. In particular, we give a Seshadri-type ampleness criterion, and we relate Seshadri constants to jet separation and to asymptotic base loci. We give three applications of our new version of Seshadri constants. First, a celebrated result of Mori can be restated as saying that any Fano manifold whose tangent bundle has positive Seshadri constant at a point is isomorphic to a projective space. We conjecture that the Fano condition can be removed. Among other results in this direction, we prove the conjecture for surfaces. Second, we restate a classical conjecture on the nef cone of self-products of curves in terms of semistability of higher conormal sheaves, which we use to identify new nef classes on self-products of curves. Third, we prove that our Seshadri constants can be used to control separation of jets for direct images of pluricanonical bundles, in the spirit of a relative Fujita-type conjecture of Popa and Schnell.
We give a lower bound of the $delta$-invariants of ample line bundles in terms of Seshadri constants. As applications, we prove the uniform K-stability of infinitely many families of Fano hypersurfaces of arbitrarily large index, as well as the uniform K-stability of most families of smooth Fano threefolds of Picard number one.
We consider flags $E_bullet={Xsupset Esupset {q}}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $ u_E$ of a Hirzebruch surface $mathbb{F}_delta$ and $X$ the surface given by $ u_E,$ and determine an analogue of the Seshadri constant for pairs $( u_E,D)$, $D$ being a big divisor on $mathbb{F}_delta$. The main result is an explicit computation of the vertices of the Newton-Okounkov bodies of pairs $(E_bullet,D)$ as above, showing that they are quadrilaterals or triangles and distinguishing one case from another.
For positive integers $n$ and $e$, let $kappa(n,e)$ be the minimum crossing number (the standard planar crossing number) taken over all graphs with $n$ vertices and at least $e$ edges. Pach, Spencer and Toth [Discrete and Computational Geometry 24 623--644, (2000)] showed that $kappa(n,e) n^2/e^3$ tends to a positive constant (called midrange crossing constant) as $nto infty$ and $n ll e ll n^2$, proving a conjecture of ErdH{o}s and Guy. In this note, we extend their proof to show that the midrange crossing constant exists for graph classes that satisfy a certain set of graph properties. As a corollary, we show that the the midrange crossing constant exists for the family of bipartite graphs. All these results have their analogues for rectilinear crossing numbers.
65 - Franz Luef , Xu Wang 2021
We investigate the frame set of regular multivariate Gaussian Gabor frames using methods from Kahler geometry such as Hormanders $dbar$-method, the Ohsawa--Takegoshi extension theorem and a Kahler-variant of the symplectic embedding theorem of McDuff-Polterovich for ellipsoids. Our approach is based on the well-known link between sets of interpolation for the Bargmann-Fock space and the frame set of multivariate Gaussian Gabor frames. We state sufficient conditions in terms of a certain extremal type Seshadri constant of the complex torus associated to a lattice to be a set of interpolation for the Bargmann-Fock space, and give also a condition in terms of the generalized Buser-Sarnak invariant of the lattice. Our results on Gaussian Gabor frames are in terms of the Sehsadri constant and the generalized Buser-Sarnak invariant of the associated symplectic dual lattice. The theory of Hormander estimates and the Ohsawa--Takegoshi extension theorem allow us to give estimates for the frame bounds in terms of the Buser-Sarnack invariant and in the one-dimensional case these bounds are sharp thanks to Faltings work on Green functions in Arakelov theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا