Do you want to publish a course? Click here

Reorientations, relaxations, metastabilities and multidomains of skyrmion lattices

73   0   0.0 ( 0 )
 Added by Lars Bannenberg
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetic skyrmions are nano-sized topologically protected spin textures with particle-like properties. They can form lattices perpendicular to the magnetic field and the orientation of these skyrmion lattices with respect to the crystallographic lattice is governed by spin-orbit coupling. By performing small angle neutron scattering measurements, we investigate the coupling between the crystallographic and skyrmion lattices in both Cu$_2$OSeO$_3$ and the archetype chiral magnet MnSi. The results reveal that the orientation of the skyrmion lattice is primarily determined by the magnetic field direction with respect to the crystallographic lattice. In addition, it is also influenced by the magnetic history of the sample which can induce metastable lattices. Kinetic measurements show that these metastable skyrmion lattices may or may not relax to their equilibrium positions under macroscopic relaxation times. Furthermore, multidomain lattices may form when two or more equivalent crystallographic directions are favored by spin-orbit coupling and oriented perpendicular to the magnetic field.



rate research

Read More

We study quantum Hall ferromagnets with a finite density topologically charged spin textures in the presence of internal degrees of freedom such as spin, valley, or layer indices, so that the system is parametrised by a $d$-component complex spinor field. In the absence of anisotropies, we find formation of a hexagonal Skyrmion lattice which completely breaks the underlying SU(d) symmetry. The ground state charge density modulation, which inevitably exists in these lattices, vanishes exponentially in $d$. We compute analytically the complete low-lying excitation spectrum, which separates into $d^{2}-1$ gapless acoustic magnetic modes and a magnetophonon. We discuss the role of effective mass anisotropy for SU(3)-valley Skyrmions relevant for experiments with AlAs quantum wells. Here, we find a transition, which breaks a six-fold rotational symmetry of a triangular lattice, followed by a formation of a square lattice at large values of anisotropy strength.
Chiral magnets like MnSi form lattices of skyrmions, i.e. magnetic whirls, which react sensitively to small electric currents j above a critical current density jc. The interplay of these currents with tiny gradients of either the magnetic field or the temperature can induce a rotation of the magnetic pattern for j>jc. Either a rotation by a finite angle of up to 15 degree or -- for larger gradients -- a continuous rotation with a finite angular velocity is induced. We use Landau-Lifshitz-Gilbert equations extended by extra damping terms in combination with a phenomenological treatment of pinning forces to develop a theory of the relevant rotational torques. Experimental neutron scattering data on the angular distribution of skyrmion lattices suggests that continuously rotating domains are easy to obtain in the presence of remarkably small currents and temperature gradients.
Magnetic skyrmions are vortex-like topological spin textures often observed in structurally chiral magnets with Dzyaloshinskii-Moriya interaction. Among them, Co-Zn-Mn alloys with a $beta$-Mn-type chiral structure host skyrmions above room temperature. In this system, it has recently been found that skyrmions persist over a wide temperature and magnetic field region as a long-lived metastable state, and that the skyrmion lattice transforms from a triangular lattice to a square one. To obtain perspective on chiral magnetism in Co-Zn-Mn alloys and clarify how various properties related to the skyrmion vary with the composition, we performed systematic studies on Co$_{10}$Zn$_{10}$, Co$_9$Zn$_9$Mn$_2$, Co$_8$Zn$_8$Mn$_4$ and Co$_7$Zn$_7$Mn$_6$ in terms of magnetic susceptibility and small-angle neutron scattering measurements. The robust metastable skyrmions with extremely long lifetime are commonly observed in all the compounds. On the other hand, preferred orientation of a helimagnetic propagation vector and its temperature dependence dramatically change upon varying the Mn concentration. The robustness of the metastable skyrmions in these materials is attributed to topological nature of the skyrmions as affected by structural and magnetic disorder. Magnetocrystalline anisotropy as well as magnetic disorder due to the frustrated Mn spins play crucial roles in giving rise to the observed change in helical states and corresponding skyrmion lattice form.
Atomic manipulation and interface engineering techniques have provided a novel approach to custom-designing topological superconductors and the ensuing Majorana zero modes, representing a new paradigm for the realization of topological quantum computing and topology-based devices. Magnet-superconductor hybrid (MSH) systems have proven to be experimentally suitable to engineer topological superconductivity through the control of both the complex structure of its magnetic layer and the interface properties of the superconducting surface. Here, we demonstrate that two-dimensional MSH systems containing a magnetic skyrmion lattice provide an unprecedented ability to control the emergence of topological phases. By changing the skyrmion radius, which can be achieved experimentally through an external magnetic field, one can tune between different topological superconducting phases, allowing one to explore their unique properties and the transitions between them. In these MSH systems, Josephson scanning tunneling spectroscopy spatially visualizes one of the most crucial aspects underlying the emergence of topological superconductivity, the spatial structure of the induced spin-triplet correlations.
102 - M. Zhu , P. G. Li , Y. Wang 2018
Sr$_4$Ru$_3$O$_{10}$, the $n$ = 3 member of the Ruddlesden-Popper type ruthenate Sr$_{n+1}$Ru$_n$O$_{3n+1}$, is known to exhibit a peculiar metamagnetic transition in an in-plane magnetic field. However, the nature of both the temperature- and field-dependent phase transitions remains as a topic of debate. Here, we have investigated the magnetic transitions of Sr$_4$Ru$_3$O$_{10}$ via single-crystal neutron diffraction measurements. At zero field, we find that the system undergoes a ferromagnetic transition with both in-plane and out-of-plane magnetic components at $T_{c}$ ~ 100 K. Below $T^{*}$ ~ 50 K, the magnetic moments incline continuously toward the out-of-plane direction. At $T$ ~ 1.5 K, where the spins are nearly aligned along the $c$ axis, a spin reorientation occurs above a critical field $B_c$, giving rise to a spin component perpendicular to the plane defined by the field direction and the $c$ axis. We suggest that both the temperature- and field-driven spin reorientations are associated with a change in the magnetocrystalline anisotropy, which is strongly coupled to the lattice degrees of freedom. This study elucidates the long-standing puzzles on the zero-field magnetic orders of Sr$_4$Ru$_3$O$_{10}$ and provides new insights into the nature of the field-induced metamagnetic transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا