Do you want to publish a course? Click here

Primordial nucleosynthesis

117   0   0.0 ( 0 )
 Added by Alain Coc
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Primordial nucleosynthesis, or big bang nucleosynthesis (BBN), is one of the three evidences for the big bang model, together with the expansion of the universe and the cosmic microwave background. There is a good global agreement over a range of nine orders of magnitude between abundances of 4He, D, 3He and 7Li deduced from observations, and calculated in primordial nucleosynthesis. However, there remains a yet-unexplained discrepancy of a factor 3, between the calculated and observed lithium primordial abundances, that has not been reduced, neither by recent nuclear physics experiments, nor by new observations. The precision in deuterium observations in cosmological clouds has recently improved dramatically, so that nuclear cross-sections involved in deuterium BBN needs to be known with similar precision. We will briefly discuss nuclear aspects related to the BBN of Li and D, BBN with nonstandard neutron sources, and finally, improved sensitivity studies using a Monte Carlo method that can be used in other sites of nucleosynthesis.



rate research

Read More

251 - Alain Coc 2016
Primordial or big bang nucleosynthesis (BBN) is now a parameter free theory whose predictions are in good overall agreement with observations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations. Most solutions to this lithium problem involve a source of extra neutrons that inevitably leads to an increase of the deuterium abundance. This seems now to be excluded by recent deuterium observations that have drastically reduced the uncertainty on D/H and also calls for improved precision on thermonuclear reaction rates.
For the first time the antineutrino spectrum formed as a result of neutron and tritium decays during the epoch of primordial nucleosynthesis is calculated. This spectrum is a non-thermal increase in addition to the standard cosmic neutrino background (C$ u$B) whose thermal spectrum was formed before the beginning of primordial nucleosynthesis. For energy larger than $10^{-2},$eV the calculated non-thermal antineutrino flux exceeds the C$ u$B spectrum and there are no other comparable sources of antineutrino in this range. The observations of these antineutrinos will allow us to look directly at the very early Universe and non-equilibrium processes taken place before, during, and some time after primordial nucleosynthesis.
The cosmic microwave background (CMB) spectrum provides tight constraints on the thermal history of the universe up to $z sim 2times 10^6$. At higher redshifts thermalization processes become very efficient so that even large energy releases do not leave visible imprints in the CMB spectrum. In this paper we show that the consistency between the accurate determinations of the specific entropy at primordial nucleosynthesis and at the electron-photon decoupling implies that no more than 7.8% of the present day CMB energy density could have been released in the post-nucleosynthesis era. As pointed out by previous studies, primordial nucleosynthesis complements model independent constraints provided by the CMB spectrum, extending them by two orders of magnitude in redshift.
As space expands, the energy density in black holes increases relative to that of radiation, providing us with motivation to consider scenarios in which the early universe contained a significant abundance of such objects. In this study, we revisit the constraints on primordial black holes derived from measurements of the light element abundances. Black holes and their Hawking evaporation products can impact the era of Big Bang Nucleosynthesis (BBN) by altering the rate of expansion at the time of neutron-proton freeze-out, as well as by radiating mesons which can convert protons into neutrons and vice versa. Such black holes can thus enhance the primordial neutron-to-proton ratio, and increase the amount of helium that is ultimately produced. Additionally, the products of Hawking evaporation can break up helium nuclei, which both reduces the helium abundance and increases the abundance of primordial deuterium. Building upon previous work, we make use of modern deuterium and helium measurements to derive stringent constraints on black holes which evaporate in $t_{rm evap} sim 10^{-1}$ s to $sim 10^{13}$ s (corresponding to $M sim 6times 10^8$ g to $sim 2 times 10^{13}$ g, assuming Standard Model particle content). We also consider how physics beyond the Standard Model could impact these constraints. Due to the gravitational nature of Hawking evaporation, the rate at which a black hole evaporates, and the types of particles that are produced through this process, depend on the complete particle spectrum. Within this context, we discuss scenarios which feature a large number of decoupled degrees-of-freedom (ie~large hidden sectors), as well as models of TeV-scale supersymmetry.
Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this lithium problem, we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of 6Li, 9Be, 11B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H approx (5-30) x 10^{-15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H sim 10^{-13}. This result is important for the study of population III star formation during the dark ages.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا